Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Noob
Xem chi tiết
Nguyễn Linh Duyên
Xem chi tiết
Nguyễn Linh Duyên
Xem chi tiết
Nguyễn Ngọc Thanh Tâm
7 tháng 11 2015 lúc 14:24

Xét tam giác AMB và tam giác AMC có:

AB=AC(giả thiết)

AM chung

MB=MC(M là trung điểm BC)

Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C

b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC

c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC

Nguyễn Linh Duyên
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 20:59

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE

b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của BA

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}\)

Ta có: DE//BC

M\(\in\)BC

Do đó: BM//DE

Ta có: \(DE=\dfrac{BC}{2}\)

\(CM=MB=\dfrac{CB}{2}\)

Do đó: DE=CM=MB

Xét tứ giác BDEM có

DE//MB

DE=MB

Do đó: BDEM là hình bình hành

c: Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=\dfrac{AC}{2}\left(1\right)\)

Xét ΔABC có

M,D lần lượt là trung điểm của BC,BA

=>MD là đường trung bình của ΔABC

=>\(MD=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MD=HE

Ta có: ED//BC

M,H\(\in\)BC

DO đó: ED//MH

Xét tứ giác DHME có

MH//DE
nên DHME là hình thang

Hình thang DHME có DM=HE

nên DHME là hình thang cân

Mai Gia Hưng
12 tháng 12 2023 lúc 21:00

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

Nguyễn Thị Gia Ngọc
Xem chi tiết
Huỳnh Thúy Anh
Xem chi tiết
nguyễn thị kim huyền
5 tháng 11 2017 lúc 20:02

tự vẽ hình nhé

a) ta có: tam giác ABC cân tại A

 ,mà MB=MC

=> AM LÀ đg phân giác

=> am VUÔNG GÓC VỚI BC

b) AM là đg phân giác (cmt)

=> AM =1/2 BC= 9:2=4.5(cm)

c) ta có tam giác AMB là tam giac vuông (AM vuông góc với BC )

mà N là trg điểm của AB 

=>MN là đg phân giác

=> MN=1/2AB=7.5:2=3.75(cm)

d)ta có: AB=AC=7.5(cm)

=>AB vuông với AC

mà MN vuông với AB 

=>MN//AC

TK DÙM MINK NHOA

bí mật
Xem chi tiết
Chủ acc bị dính lời nguy...
30 tháng 5 2020 lúc 20:45

A B C D M c b

Trên tia đối của tia MA lấy điểm D sao cho MD=MA

Xét \(\Delta AMB\)và \(\Delta DMC\):

MB=MC(gt)

\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)

BM=CM(gt)

=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)

=> DC=AB=c

Xét \(\Delta ACD\)có: AD<AC+DC

=> 2AM<b+c

=> \(AM< \frac{b+c}{2}\)

=> Đpcm

P/s:Phần này là phần BĐT tam giác ý, dễ mà:>

Khách vãng lai đã xóa
nguyễn chi
Xem chi tiết
Trí Tiên亗
26 tháng 2 2020 lúc 14:28

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 2 2020 lúc 14:50

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa