Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Na Bong Pé Con
Xem chi tiết
Phạm Gia Bảo
9 tháng 7 2016 lúc 8:59

10A=10^20+10/10^20+1=1+9/10^20+1 (1)

10B=10^21+10/10^21+1=1+9/10^21+1 (2)

tu (1) va (2) suy ra 10a<10b

suy ra a<b

Linh Hồn Vãi
Xem chi tiết
pham hong thai
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
soyeon_Tiểubàng giải
24 tháng 10 2016 lúc 21:38

Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)

Ta có:

\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)

\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

=> A > B

do le quyen
Xem chi tiết
cường xo
28 tháng 3 2020 lúc 5:02

Ta có 108 > 1 

       và 108 < 109

=) A > 1

Ta có : 1021 > 1020

            1021 > 1 

=) B < 1

Vậy A > B

Khách vãng lai đã xóa
Nguyễn Đức Anh
Xem chi tiết
Trần Thị Xuân
8 tháng 11 2017 lúc 10:05

\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)

NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)

VẬY B<A

Nguyễn Thảo Linh
Xem chi tiết
xinh xinh
27 tháng 2 2017 lúc 11:41

Ta thấy B < 1 và 9 > 1 nên ta có:

            B <     1020 + 1 + 9 / 1021 + 1 + 9

  =>      B <     1020 + 10 / 1021 + 10

  =>      B <     10(1019 + 1) / 10(1020 + 1)

=>        B <     1019 + 1 / 1020 + 1 = A

 =>        B < A

Phạm Thị Hằng
Xem chi tiết
Phan Thi Thuy Trang
24 tháng 10 2016 lúc 21:50

Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)

=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)

=>10A=1+\(\frac{9}{10^{20}+1}\)

Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)

=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)

=>10B=1+\(\frac{9}{10^{21}+1}\)

Do \(\frac{9}{10^{20}+1}\)\(\frac{9}{10^{21}+1}\)=>A > B

Orochimaru
Xem chi tiết
lo ngoc linh
7 tháng 3 2017 lúc 21:16

10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)

10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)

Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B