SO SANH \(\frac{10^{19}+1}{10^{20}+1}\) VA \(\frac{10^{20}+1}{10^{21}+1}\)
Cho 2 p/s
A= 10^19 +1/ 10^20+1
B= 10^20 +1/ 10^21+1
So sanh A va B
10A=10^20+10/10^20+1=1+9/10^20+1 (1)
10B=10^21+10/10^21+1=1+9/10^21+1 (2)
tu (1) va (2) suy ra 10a<10b
suy ra a<b
10^19+1/10^20+1 so sanh voi 10^20+1/10^21+1
so sanh 2 phan so
a=10^19+1/10^20+1;b=10^20+1+10^21+1
So sánh A = \(\frac{10^{19}+1}{10^{20}+1}\) và B = \(\frac{10^{20}+1}{10^{21}+1}\) ?
Áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (a;b;c \(\in\) N*)
Ta có:
\(B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}\)
\(B< \frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
so sanh A,B .A=\(\frac{10^9+1}{10^8+1}\) ,,B\(\frac{10^{20}+1}{10^{21}+1}\)
Ta có 108 > 1
và 108 < 109
=) A > 1
Ta có : 1021 > 1020
1021 > 1
=) B < 1
Vậy A > B
so sánh
A=\(\frac{10^{19}+1}{10^{20}+1}\)và B=\(\frac{10^{20}+1}{10^{21}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
So sánh phân số sau : A=\(\frac{^{10^{19}}+1}{10^{20}+1}\)và B = \(\frac{10^{20}+1}{10^{21}+1}\)
Ta thấy B < 1 và 9 > 1 nên ta có:
B < 1020 + 1 + 9 / 1021 + 1 + 9
=> B < 1020 + 10 / 1021 + 10
=> B < 10(1019 + 1) / 10(1020 + 1)
=> B < 1019 + 1 / 1020 + 1 = A
=> B < A
So sánh A = \(\frac{10^{19}+1}{10^{20}+1}\) và B = \(\frac{10^{20}+1}{10^{21}+1}\) ?
Ta thấy:A=\(\frac{10^{19}+1}{10^{20}+1}\)=>10A=\(\frac{10^{20}+10}{10^{20}+1}\)
=>10A=\(\frac{10^{20}+1+9}{10^{20}+1}\)
=>10A=1+\(\frac{9}{10^{20}+1}\)
Ta thấy:B=\(\frac{10^{20}+1}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+10}{10^{21}+1}\)
=>10B=\(\frac{10^{21}+1+9}{10^{21}+1}\)
=>10B=1+\(\frac{9}{10^{21}+1}\)
Do \(\frac{9}{10^{20}+1}\)> \(\frac{9}{10^{21}+1}\)=>A > B
So sánh A và B biết
A=\(\frac{10^{19}+1}{10^{20}+1}\)
B=\(\frac{10^{20}+1}{10^{21}+1}\)
10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)
10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)
Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B