So sánh 1/2*1/2+1/3*1/3+1/4*1/4+...+1/50*1/50 với 1
1) So sánh :
Tổng 3 + 1/2^2 + 1/3^2 + 1/4^2 + ......... + 1/50^2 với 4
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)
So sánh :
Tổng 3 + 1/2^2 + 1/3^2 + 1/4^2 + ........... + 1/50^2 với 4
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)
so sánh A=1/2^1+1/2^2+1/2^3+1/2^4+...+1/2^49+1/2^50 với 1
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)
A = 1 - 1/250
so sánh
a)A=1/2^1+1/2^2+1/2^3+...+1/2^49+1/2^50 với 1
b)B=1/3^1 +1/3^2+1/3^3...+1/3^99+1/3^100 với 1/2
c)C=1/4^1+1/4^2+1/4^3+...+1/4^999+1/4^1000 với 1/3
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}
Bạn Detective_conan giải đúng đấy!
Cần lời giải
1 1/3^300 so sánh với 1/5^199
2: 107^50 và 73^75,54^4 và 21^12 so sánh
1) \(5^{199}< 5^{200}=25^{100}\)
\(3^{300}=27^{100}>25^{100}\)
\(\Rightarrow3^{300}>5^{199}\)
\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
2) a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)
\(\Rightarrow107^{50}< 73^{75}\)
b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)
1/1*1+1/2*3+1/3*5+1/4*7+...+1/49*97+1/50*99. Hãy so sánh với 7/6
Giải bài tập .So sánh A với 1/2. Biết A = 2/3^2+3/3^3+4/3^4+....+50/3^50
So Sánh:
a 7 + √55 với √48+248+2
b √(1−√50)2(1−50)2 với 6
Tìm x,y biết: 3x2 - 3xy - 5x - y = -20
Tính:
3(x - 2) -4(2x + 1) - 5(2x + 3) = 50
(69167−(2+(3+(4+5−1)−1)−1)−1)−1(69167−(2+(3+(4+5−1)−1)−1)−1)−1
GIÚP MÌNH VỚI MAI NỘP RÒI!!!!!!!!
cho P=(1-1/22).(1-1/32).(1-1/42)...(1-1/502)
so sánh P với 1/2
Câu hỏi của (¯`*•.¸,¤°´✿.。.:*ĞĨŔĹ-2Ķ7➻❥_ŤPĤŤ︵❣ - Toán lớp 6 - Học toán với OnlineMath
Mới thi hk2 xong. mk lm đc bài này.