Tìm số tự nhiên n mà 5 / n-1 là số nguyên tố
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1
A=3/n-1
a) Tìm số tự nhiên n để A là số nguyên.
b) Tìm số tự nhiên n để A là số nguyên tố .
Giải sớm dùm mình nhang mình sắp thi rồi ai nhanh mà đung mình tick cho .
a. để A là số nguyên thì 3 chia hết cho n-1 suy ra n-1 thuộc ước của 3
Ư(3)= (+_ 1: +_3)
lập bảng ta tính được x=( 0;2;4)
a)Để A là số nguyên thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên thì n=0;2;4
b)
Để A là số nguyên tố thì 3 chia hết cho n-1
Hay \(\left(n-1\right)\inƯ\left(3\right)\)
Vậy Ư (3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vì n là số tự nhiên nên Để A là số nguyên tố thì n=2 là TM
a, Để A là số nguyên thì 3 chia hết cho n - 1 hay ( n - 1 ) thuộc Ư(3)
Ư(3) = { 1 ; -1 ; 3 ; -3 }
Ta có bảng sau :
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
Vậy để A là số nguyên thì n thuộc { 2 ; 0 ; 4 ; -2 }
b, Để A là số nguyên tố thì n không thuộc { 2 ; 0 ; 4 ; -2 }
Tìm số tự nhiên n để n^5+n+1 là số nguyên tố.
Vì n+n =2n (chẵn)
Vì trong các số nguyên tố chỉ có 2 số nguyên tố liên tiếp là 2,3
=>2n+1=3
=>n=1
tíc mình nha
Tìm số tự nhiên n sao cho n^5 + n + 1 là số nguyên tố
tìm số tự nhiên n để (n+5).(n+1) là số nguyên tố
cảm ơn mn
Cái này thì chắc chắn là không có số n nào thỏa mãn rồi bạn
Bởi vì (n+5)(n+1) ko bao giờ là số nguyên tố
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Chứng minh rằng có thể tìm được 1 dãy số gồm n số tự nhiên liên tiếp (n>1) mà không có số nào là số nguyên tố?
Xét dãy các số: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Có \(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên số đó là hợp số.
Vậy dãy số trên gồm toàn hợp số.
Tìm số tự nhiên n để n+1; n+5; n+9 đều là số nguyên tố
+ Với \(n=1\)\(\Rightarrow\)\(n+5=1+5=6\)( Là hợp số, loại )
+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n+1=2+1=3\\n+5=2+5=7\\n+9=2+9=11\end{cases}}\)( TM )
+ Với \(n=3\)\(\Rightarrow\)\(n+5=3+5=8\)( Là hợp số, loại )
+ Với \(n>3\)thì n có dạng \(\hept{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)\(\left(k>0\right)\)
+ Với \(n=3k+1\)\(\Rightarrow\)\(n+5=3k+6=3.\left(k+2\right)⋮3\)( Là hợp số, loại )
+ Với \(n=3k+2\)\(\Rightarrow\)\(n+1=3k+3=3.\left(k+1\right)⋮3\)( Là hợp số, loại )Vậy \(n=2\)