Tìm tất cả các giá trị của n sao cho 6n+42/6n là số nguyên
cho A=6n+42/6n tìm tất cả các số nguyên n sao cho a là số nguyên
Để A nguyên => 42 chia hết cho 6n
=> 7 chia hết cho n
=> n thuộc ư(7)
=> Ư(7)={-1;1;-7;7}
Ta có:
| n | ||||
Cho A =\(\dfrac{6n+42}{6n}\) với n ϵ Z và n ≠ 0. Tìm tất cả các số nguyên n sao cho A là số nguyên
Để A là số nguyên thi 6n+42⋮6n
6n⋮6n⇒42⋮6n
7⋮n
n∈Ư(7)={1;-1;7;-7}
Vậy n ∈ {1;-1;7;-7}
cho A = 6n + 42/6n với n € Z và n khác 0. Tìm tất cả các số nguyên n sao cho A là số nguyên
Cho A= 6n+42/6n với n thuộc Z và n khác o. Tìm tất cả các số nguyên n sao cho A là số nguyên
cho A =6n+42 phần 6n với n thuộc N và n khác 0 tìm tất cả các số tự nhiên n sao cho A là số nguyên
\(A=\frac{6n+42}{6n}=\frac{6n}{6n}+\frac{42}{6n}=1+\frac{7}{n}\)
Để \(A\in Z\)=> \(\Rightarrow7\) chia hết cho \(n\) \(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Cho A = 6n+42/6n với n thuộc Z và n khác 0. Tìm tất cả các số nguyên n sao cho A cũng là số nguyên.
để A là số nguyên thì 6n + 42 phải chia hết cho 6n
ta có: 6n + 42 chia hết cho 6n
mà 6n đã chia hết cho 6n nên 42 phải chia hết cho 6n.
vậy ta xét bảng giá trị:
| 6n | n |
| 1 | loại |
| 42 | 7 |
| 2 | loại |
| 21 | loại |
| 6 | 1 |
| 7 | loại |
| 3 | loại |
| 14 | loại |
| -1 | loại |
| -42 | -7 |
| -2 | loại |
| -21 | loại |
| -6 | -1 |
| -7 | loại |
| -3 | loại |
| -14 | loại |
VẬY n = 7;1;-7;-1
MỆT QUÁ
Cho A = (6n+42)/6n với n\(\in\)Z và n \(\ne\)0. Tìm tất cả các số nguyên n sao cho A là số nguyên
Cho A= 6n+42/6n với n thuộc Z và n khác 0 . Tìm tất cả số nguyên n sao cho A là số nguyên
Ta có : A=\(\frac{6n+42}{6n}=1+\frac{7}{n}\)
A nhận giá trị nguyên \(\Leftrightarrow\frac{7}{n}nguyên\)
tức n là ước của 7 = 1 ;-1 ;7 -7
Cho A = \(\frac{6n+42}{6n}\) với n thuộc Z và n khác 0. Tìm tất cả các số nguyên n sao cho A là số nguyên.