Tìm x,y:
\(2x\left(3y-2\right)+\left(3y-2\right)=-55\)
Tìm x ,y biết
\(2x\cdot\left(3y-2\right)+\left(3y+2\right)=-55\)
Tìm x,y nguyên biết:
\(2x\left(3y-2\right)+\left(3y-2\right)=-55\)
2x(3y−2)+(3y−2)=−55
(2x + 1)(3y - 2) = -55
tới đây xét bảng rồi ra thôi, dễ mà
giúp mk nha mấy bạn (làm ơn nhanh lên) ! xin cảm ơn^-^
Tìm các số nguyên x, y , biết:
\(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
Ai nhanh mik tk cho nha^^
\(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
\(\Rightarrow\left(3y-2\right)\left(2x+1\right)=-55\)
Mà \(-55=1.\left(-55\right)=\left(-1\right).55\) và ngược lại
Lập bảng ta có:
3y-2 | 1 | -55 | -1 | 55 |
y | 1 | -53/3 | 1/3 | 19 |
2x+1 | -55 | 1 | 55 | -1 |
x | -28 | 0 | 27 | -1 |
Vậy có 4 cặp số nguyên (x;y) = (-28;1) ; (0; \(\frac{-53}{3}\) ) ; (27; \(\frac{1}{3}\) ) ; (-1;19)
\(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
\(\Rightarrow\left(2x+1\right)\left(3y-2\right)=-55\)= -11 . 5 = -5 . 11 = 5 . -11 = 11 . -5 = 1 . -55 = -55 . 1 = -1 . 55 = 55 . -1
Với : \(\hept{\begin{cases}2x+1=1\\3y-2=-55\end{cases}\Rightarrow}\hept{\begin{cases}2x=0\\3y=-53\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}}\)=> không thõa mã
\(\hept{\begin{cases}2x+1=-1\\3y-2=55\end{cases}\Rightarrow}\hept{\begin{cases}2x=-2\\3y=57\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=19\end{cases}}\)
\(\hept{\begin{cases}2x+1=55\\3y-2=-1\end{cases}\Rightarrow}\hept{\begin{cases}2x=54\\3y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}}\)=> ko thõa mãn
\(\hept{\begin{cases}2x+1=-55\\3y-2=1\end{cases}\Rightarrow}\hept{\begin{cases}2x=-56\\3y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=-28\\y=1\end{cases}}\)
\(\hept{\begin{cases}2x+1=-5\\3y-2=11\end{cases}\Rightarrow\hept{\begin{cases}2x=-6\\3y=13\end{cases}\Rightarrow}}\hept{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}}\)=> ko thõa mãn
\(\hept{\begin{cases}2x+1=5\\3y-2=-11\end{cases}\Rightarrow}\hept{\begin{cases}2x=4\\3y=-9\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
\(\hept{\begin{cases}2x+1=-11\\3y-2=5\end{cases}\Rightarrow}\hept{\begin{cases}2x=-12\\3y=7\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}}\)=> ko thõa mãn
\(\hept{\begin{cases}2x+1=11\\3y-2=-5\end{cases}\Rightarrow}\hept{\begin{cases}2x=10\\3y=-3\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=-1\end{cases}}\)
Tìm x:
a) 2x(x-5)-x(2x+3)=26
b) \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
c) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
tìm cặp số thực ( x;y) sao cho:
\(\left|2x-0,\left(24\right)\right|+\left|3y+0,1\left(55\right)\right|=0\)
Ta có
\(\left|2x-0,\left(24\right)\right|+\left|3y+0,1\left(5\right)\right|=0\)
\(\Rightarrow\left|2x-\frac{24}{99}\right|+\left|3y+0,\left(5\right)-0,4\right|=0\)
\(\Rightarrow\left|2x-\frac{8}{33}\right|+\left|3y+\frac{5}{9}-\frac{4}{5}\right|=0\)
Ta có
\(\begin{cases}\left|2x-\frac{8}{33}\right|\ge0\\\left|3y+\frac{5}{9}-\frac{2}{5}\right|\ge0\end{cases}\)
\(\Rightarrow\begin{cases}2x-\frac{8}{33}=0\\3y+\frac{5}{9}-\frac{2}{5}=0\end{cases}\)
\(\Rightarrow\begin{cases}2x=\frac{8}{33}\\3y=\frac{7}{45}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{4}{33}\\y=\frac{7}{135}\end{cases}\)
Vậy \(\left(x;y\right)=\left(\frac{4}{45};\frac{7}{135}\right)\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
1. Rút gọn biểu thức:
\(B=2\left(2x+3y\right)\left(2x-3y\right)-\left(2x-1\right)^2-\left(3y-1\right)^2\)
\(C=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
tìm x,y biết
\(\left|2x-5\right|+\left|3y+1\right|=0\)
\(\left|3x-4\right|+\left|3y-5\right|=0\)
\(|16-|x||+\left|5y-2\right|=0\)
\(\left|2x-5\right|+\left|xy-3y+2\right|=0\)
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
giúp mik câu cuối với các bạn
với câu cuối ;Nguyễn Khánh Linh em chỉ cần tìm x ; biến đổi vế rồi lắp x vào để giải tiếp
khúc đầu tương tự bài đầu
=> \(\hept{\begin{cases}2x-5=0\\xy-3y+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(x-3\right)+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(\frac{2}{5}-3\right)+2=0\end{cases}}\)
em tự giải tiếp
Rút gọn biểu thức :
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
b) \(\left(4x^2-3y\right).2y-\left(3x^2-4y\right).3y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)