Cho tam giac ABC nhon (ab<ac) noi tiep duong tron (O;R). Cac duong cao AD, BE, CF cat tai H
a) chung minh OA vuong goc voi EF
cho tam giac ABC nhon ,duong phan giac AD.biet AB=c;AC=b.tinh AD theo b,c
Cho tam giac nhon ABC. Ke AH vuong goc voi BC (H thuoc BC). Biet AB=13 cm, AH=12cm va HC=16cm.Tinh chu vi tam giac ABC
cho tam giac nhon abc. ke ah vuong goc voi bc (h thuoc bc). biet ab=13cm, ah=12cm va hc=16cm. tinh chu vi tam giac abc
ta có :ac^2=hc^2+ha^2(định lí pitago)
\(\Rightarrow\)AH^2=AC^2-HC^2=4^2-2^2=12
\(\Rightarrow\)AH=\(\sqrt{12\approx3}\)
ĐỘ dài bc là:3+2=5
chu vi là:4+5+5\(\approx\)14
đợi chút mình làm lại sai đề bài này mình làm rồi
Cho tam giac ABC nhon . Ke phan giac BE, CF.
a) Chung minh rang: tam giac AEF nhon.
b) Lay M tren EF, ke MH vuong goc voi BC, MK vuong goc voi AB, MT vuong goc voi AC. Chung minh: MH=MK+MT.
cho tam giac ABC co 3 goc nhon ( AB<AC) co 3 duuong cao AD,BE,CF cat nhau tai H. Chung minh tam giac BFH dong dang voi tam giac CEH va FA.BH=FH.AB
mình chỉ làm đựt câu a thui sorry nha
a/
xét tam giác HBF và tam giác HCE có :
góc BFH= góc CEH=90 độ (gt)
góc FHB= góc EHC (đối)
=>tam giác HBF đồng dạng với tam giác HCE(g.g)
cho tam giac abc nhon noi tiep(o;r)ab<bc cac duong cao bd ce
cm goc ebd= goc ecd
cm tu giac bedc noi tiep
+Cm tứ giác BEDC nội tiếp:
-Xét tứ giác BEDC, ta có:
góc BEC= góc BDC
góc BEC và góc BDC cùng nhìn cạnh BC( cùng nhìn cạnh dưới một góc không đổi )
---> BEDC là tứ giác nội tiếp
+Cm góc EBC= góc ECD:
-Do tứ giác BEDC là tứ giác nội tiếp
mà góc EBD và góc ECD cùng nhìn cạnh ED
---> góc EBD= góc ECD(đpcm)
Chúc bạn học tốt nhé
xét tam giác ABC nhọn nội tiếp (O;r) ta có BD là đường cao(giả thiết)
=> góc BDC =90 độ
lại có CE là đường cao của tam giác ABC(giả thiết)=>góc CEB=90 độ
=>góc BDC+góc CEB=90+90=180 độ
mà 2 góc này ở vị trí đối nhau=> tứ giác BEDC nội tiếp
=> góc EBD=Góc ECD (cùng chắn cung ED)
cho tam giac nhon ABCc to AB=12cm AC=15cm tren canh AB va BC lay cac diem D va E sao cho AD = 4cm AE = 5cm
cmr DE//BC =>tam giac am giacADE dong dang voi tam giac ABC
Mk chỉnh lại đề nhé: trên cạnh AB và AC lấy điểm D và E sao cho: AD = 4cm; AE = 5cm
BÀI LÀM
Ta có: \(\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\) \(\frac{AE}{AC}=\frac{5}{15}=\frac{1}{3}\)
suy ra: \(\frac{AD}{AB}=\frac{AE}{AC}\), áp dụng định lý Ta-lét đảo \(\Rightarrow\)\(\frac{DE}{BC}\)
Xét \(\Delta ADE\)và \(\Delta ABC\) có:
\(\frac{AD}{AB}=\frac{AE}{AC}\)
\(\widehat{BAC}\) CHUNG
suy ra: \(\Delta ADE~\Delta ABC\) (C.G.C)
Cho tam giac ABC nhon ,chung minh :BC tren sinA= CA tren sinB= AB tren sinC
Bạn kẻ thêm 2 đường cao bất kì của tam giác rồi áp dụng tỉ số lượng giác là xong rồi
Cho tam giac ABC nhon. Duong cao AH. Xac dinh vi tri cua I tren canh AB, K tren canh AC de chu vi tam giac HIK nho nhat.
Cho tam giac ABC nhon va AB<AC co duong cao AH . Keo dai AH
them 1 doan HD bang voi HA so sanh tam giac ABH tam giac giac BHD
so sanh tam giac ACH va CDH
Hình vẽ:
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!