Tam giác ABC can tại A, BH vuông góc với AC tại H. Lấy M bất kì thuộc BC. Kẹt MD vuông AB, ME vuông AC, MF vuông BH.
a chứng minh ME=MF
b CM: tam giác DBM=tg FMB
Cho tam giác ABC có AB=AC. Vẽ BH vuông góc AC ( H thuộc AC). Trên BC lấy M, vẽ MD vuông góc AB; ME vuông góc AC; MF vuông góc BH.
a)CM ME = FH
b)CM tam giác DBM= tam giác FMB
c)CM MD+ME=BH
cho tam giác ABC cân tai A, đường cao BH. trên đáy BC lấy điểm M, vẽ MD vuông góc với AB, ME vuông góc với AC, MF vuông góc với BH
a) chứng minh ME=FH
b) chứng minh tam giác DBM và tam giác FMB = nhau
c) chứng minh khi M chạy trên BC thì tổng MD + ME có giá trị không đổi
d) trên tia đối của CA, lấy điểm K sao cho KC=EH. chứng minh rằng: trung điểm của KD nằm trên cạnh BC
a,
Xét tứ giác MEFH, có :
\(\widehat{MEF}=\widehat{EHF}=\widehat{HFM}=90^o\)
=> tứ giác MEFH là hình chữ nhật
=> ME = FH
a) ME⊥AC, FH⊥AC \(\Rightarrow\)ME//FH.
MF⊥BH, EH⊥BH \(\Rightarrow\)MF//EH.
△MEF và △HFE có: \(\widehat{MEF}=\widehat{HFE};\widehat{MFE}=\widehat{HEF};EF\) là cạnh chung.
\(\Rightarrow\)△MEF=△HFE (g-c-g).
\(\Rightarrow ME=FH\)
b) BH//ME \(\Rightarrow\widehat{FMB}=\widehat{ACB}=\widehat{DBM}\)
△DBM và △FMB có: \(\widehat{BDM}=\widehat{MFB};\widehat{DBM}=\widehat{FMB};BM\) là cạnh chung.
\(\Rightarrow\)△DBM=△FMB (ch-gn)
c) \(S_{ABM}+S_{ACN}=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}\left(MD.AB+ME.AC\right)=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}.AB\left(MD+ME\right)=S_{ABC}\)
-Do \(S_{ABC},AB\) ko đổi nên \(MD+ME\) cũng ko đổi.
d) BC cắt DK tại N.
Kẻ KG//AB (G thuộc BC).
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CGK}\\\widehat{ACB}=\widehat{KCG}\end{matrix}\right.\Rightarrow\widehat{CGK}=\widehat{KCG}\)
\(\Rightarrow\)△KCG cân tại K nên \(CK=GK=EH\)
Có: \(BD=MF\) (△DBM=△FMB) ; \(MF=HE\)(△MEF=△HFE)
\(\Rightarrow BD=EH=GK\).
△BDN và △GKN có: \(\widehat{BDN}=\widehat{GKN};\widehat{DBN}=\widehat{KGN};BD=GK\)
\(\Rightarrow\)△BDN=△GKN (g-c-g)
\(\Rightarrow DN=KN\) nên N là trung điểm DK.
\(\Rightarrowđpcm\)
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A. Vẽ đường cao BH. Trên đáy BC lấy điểm M.Vẽ MD vuông góc với AB, ME vuông góc với AC và MF vuông góc với BH
a)Chứng minh ME = FH
b)Chứng minh tam giác DBM = tam giác FMB
c)Chứng minh khi điểm M chạy trên đáy BC thì MD + ME có giá trị không đổi
a, Ta thấy :FH\(\perp\)HE
ME\(\perp\)HE
=>FH//ME
=>FHM^=HME^
Xét \(\Delta\)vuông FHM và \(\Delta\)vuông EMH ,có
HM cạnh chung
FHM^=HME^ (cmt)
=>\(\Delta\)FHM =\(\Delta\)EMH (ch-gn)
=>ME=FH (hai cạnh tương ứng)
Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH.
a) Chứng minh: ∆DBM = ∆FMB.
b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi.
c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH.
Chứng minh: BC đi qua trung điểm của đoạn thẳng DK.
Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH.
a) Chứng minh: ∆DBM = ∆FMB.
b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi.
c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH.
Chứng minh: BC đi qua trung điểm của đoạn thẳng DK.
a: Xét ΔDBM vuông tại D và ΔFMB vuông tại F có
MB chung
góc DBM=góc FMB
=>ΔDBM=ΔFMB
b:
Xét tứ giác FHEM có
FH//EM
FM//HE
=>FHEM là hình bình hành
MD+ME=FB+FH=BH ko đổi
Cho tam giác ABC cân tại A, đường cao BH. Trên BC lấy M, vẽ MD vuông góc vs AB, ME vuông góc vs AC, MF vuông góc vs BH
a) tíh ME = FH
b) chứng minh tam giác DBM = tam giác FMB
c) chứng minh khi M chạy trên BC thù tổng MD + ME có giá trị k đổi
Cho tam giác ABC cân tại A ( góc A < 90 độ ) , kẻ BH vuông góc với AC tại H . Tren đáy BC lấy M , vẽ MD vuông góc với AB tại D ; ME vuông góc với AC tại E : MF vuông góc với BH tại F .
a, CM tam giác DBM = tam giác FMB.
b, CM DF song song với BC