chứng tỏ rằng 22.8^2n + 21^n+1
chứng tỏ rằng số (3^2^2016 + 10) / 13 là số tự nhiên
bài 5:
1) cho A = 5+32+...+32017+32018. Tìm số tự nhiên n biết 2A-1=3n
2) chứng tỏ rằng với mọi số tự nhiên n thì 3n-3+2n-3+3n+1+2n+2 chia hết cho 6
3) tìm tất cả các cặp số tự nhiên (a,b) để 5a +9999 =20b
18) Cho A =\(\dfrac{7^{2016^{2019}}-3^{2016^{2015}}}{5}\)chứng tỏ A là số chẵn.
mn mn mn giúp giúp mình gấp mình sắp đi học rồiiiii
\(2,\\ 3^{n-3}+2^{n-3}+3^{n+1}+2^{n+2}\\ =3^{n-3}\left(1+3^4\right)+2^{n-3}\left(1+2^5\right)\\ =3^{n-3}\cdot82+2^{n-3}\cdot33\)
Vì \(3^{n-3}\cdot82⋮2;⋮3\) nên \(3^{n-3}\cdot82⋮6\)
\(2^{n-3}\cdot33⋮2;⋮3\) nên \(2^{n-3}\cdot33⋮6\)
Do đó tổng trên chia hết cho 6 với mọi \(n\in N\)
cho S = 3 + 3^2 + 3^3 + ... + 3^2021
a, chứng tỏ rằng S chia hết cho 13
b,tìm số tự nhiên 'n' biết 2S + 3 = 3^2n
c, chứng tỏ S không là số chính phương
a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm
vì tổng của 1 nhóm chia hết cho 13
=>s chia hết cho 13
b)n=1011
c) cmr s :4 dư 3
từ đó
=>s không là số chính phương vì s:4 dư 3
S= 3+3^2+3^3+...+3^2021
a) Chứng tỏ rằng S chia hết cho 13
b) Tìm số tự nhiên N biết 2S+3=3^2n
c) Chứng tỏ S không phải số chính phương
Mọi người giúp mik với nhé
có nên giúp ko nhể
Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là nguyên tố ?
a,chứng tỏ rằng với mọi số tự nhiên n thì số 9^2n - 1 chia hết cho 2 và 5
b, chứng tỏ rằng p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
chứng tỏ rằng mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là hai số nguyên tố cùng nhau
Goi d la UCLN cua 2n+3 va 2+n
2n+3 chia het cho d
2+n chia hết cho d----> 2.(2+n)=4+2n chia het cho d
--> 4+2n-(2n+3) chia het cho d
--->4+2n-2n-3 chia het cho d
--> 1 chia het cho d
vay 2n+3 va n+2 la hai so nguyen to cung nhau
Chứng tỏ rằng với mọi số tự nhiên n, hai số n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi d là Ước chung lớn nhất của chúng ta có
n+2 chia hết cho d
2n+3 chia hết cho d
=>n+2-2n+3 chia hết cho d
=>2(n+2)-2n+3 chia hết cho d
=>2n+4-2n+3 chia hết cho d
=>1 chia hết cho d
=> d=1
Vậy ước chung của 2 số trên là 1 nên 2 số đó là 2 số nguyên tố cùng nhau
Gọi d là ƯC (n + 2; 2n + 3) ( d ∈ N ) Nên ta có :
n + 2 ⋮ d và 2n + 3 ⋮ d
<=> 2(n + 2) ⋮ d và 1(2n + 3) ⋮ d
<=> 2n + 4 ⋮ d và 2n + 4 ⋮ d
=> (2n + 4) - (2n + 3) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( n + 2 ; 2n + 3 ) = 1 => n + 2 và 2n + 3 là nguyên tố cùng nhau
Gọi d là ƯCLN (n + 2 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow2n+4-\left(2n+3\right)⋮d\)
\(2n+4-2n-3⋮d\)
\(4-3⋮d\)
\(1⋮d\)\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+2;2n+3\right)=1\)
Vậy với mọi số tự nhiên n thì hai số n + 2 và 2n + 3 là hai số nguyên tố cùng nhau.
Chứng tỏ rằng với mọi số tự nhiên n thì n+2 và 2n+3 là hai số nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau