cho tam giác abc vuông tại a ab>ac m là điểm tùy ý trên bs qua m kẻ mx vuông góc bc cắt ab tại i cắt ac tại d.a.cmr:tam giác abc đồng dạng tam giác mbc b.cmr:bi.ba=bm.bc c.ci cắt bd tại k.cmr:ck vuông góc db d.cho góc acb =60 độ tính scma/sacd
cho tam giác abc vuông tại a có ab>ac m là điểm tùy ý trên bc. Qua m kẻ mx vuông góc bc và cắt ab tại i cắt ca tại d
cmr: tam giác abc đồng dạng với tam giác mdc
cmr: bi.ba=bm.bc
cmr: tam giác iam đồng dạng với tam giác idm
cho góc acb= 60 độ và diện tích tam giác cdb là 60 cm vuông . tính diện tích tam giác cma
Cho tam giác ABC vuông tại A. AB>AC, M là điểm tuỳ ý trên cạnh BC. Qua M kẻ tia Mx vuông góc với BC và cắt AB tại I, cắt CA tại D. Chứng minh rằng
a.)Tam giác ABC đồng dạng với tam giác MDC
b.)BI.BA=BM.BC
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại điểm I, cắt đường thẳng Ac tại điểm D.
a) Chứng minh: Tam giác ABC đồng dạng với tam giác MDC
b) Chứng minh: BI.BA = BM.BC
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
a) Xét \(\Delta ABC\)và \(\Delta MDC\)
Ta có: \(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta MDC\left(g-g\right)\)
b) Xét \(\Delta BIM\)và \(\Delta BCA\)
Ta có: \(\widehat{IMB}=\widehat{CAB}=90^o\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\Delta BIM~\Delta BCA\left(g-g\right)\)
\(\Rightarrow\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow BI\text{.}BA=BM.BC\)
Cho tam giác ABC vuông tại A có AB > AC. M là điểm tùy ý trên BC. Qua M kẻ tia Mx vuông góc BC và cắt AB tại I, cắt tia CA tại D.
a.Tam giác ABC đồng dạng tam giác MDC. b. BI.BA = BM.BC.
c.CI cắt BD tại K. Chứng minh BI.BA=CI. CK không phụ thuộc vào vị trí của điểm M.
d.Cho góc ACB=60 độ. Tính tỉ số của SCMA với SCDB
m van ve dc
a,Ta co goc MDC+goc C=90o
ma goc C + goc ABC=90o
=>MDC=ABC=>dong dang
b,Tuong tu phan a cong goc thi chung minh dc tgMBI dong dang tgABC
=>BI.BA=BM.BC
c,Ke CI cat BD tai K dc tam giac BDC co 2 duong cao BA va DM cat nhau tai I=>CK la dg cao cua tam giac BDC.
=>BKI=CDK=90o
BI.BA=BM.BC=>BM.BC=CI.CK nhung nhin hinh m ko thay no = nhau
Cho tam giác ABC vuông tại A có AB > AC. M là điểm tùy ý trên BC. Qua M kẻ tia Mx vuông góc BC và cắt AB tại I, cắt tia CA tại D.
a.Tam giác ABC đồng dạng tam giác MDC. b. BI.BA = BM.BC.
c.CI cắt BD tại K. Chứng minh BI.BA=CI. CK không phụ thuộc vào vị trí của điểm M.
d.Cho góc ACB=60 độ. Tính tỉ số của SCMA với SCDB
giúp mik vs mik cần gấp
Cho tam giác ABC vuông tại A. AB>AC, M là điểm tuỳ ý trên cạnh BC. Qua M kẻ tia Mx vuông góc với BC và cắt AB tại I, cắt CA tại D. Chứng minh rằng
a.)Tam giác ABC đồng dạng với tam giác MDC
b.)BI.BA=BM.BC
c,CI cắt BD tại K.CM:BI.BA+CI.CK ko đổi khi M chuyển động trên BC
d,Cho góc ACB bằng sáu mươi độ và SCMA bằng tám mươi cm vuông.Tính SCDM
Các bn giúp mk vs ạ vẽ hình ln cho mk nha các bn lm c,d cho mk là đc ạ mk lm đc a,b r mk cảm ơn
a: Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{C}\) chung
Do đó: ΔABC∼ΔMDC
b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔBMI∼ΔBAC
Suy ra:BM/BA=BI/BC
hay \(BM\cdot BC=BI\cdot BA\)
-Câu b bạn đã làm được thì mình sẽ không c/m lại.
c. -Xét △BCI có:
CA là đường cao (CA⊥AB tại A).
IM là đường cao (IM⊥BC tại M).
CA và IM cắt nhau tại D.
\(\Rightarrow\) D là trực tâm của △ABC.
\(\Rightarrow\)BD là đường cao của △ABC.
Mà BD cắt CI tại K (gt).
\(\Rightarrow\)BD⊥CI tại K nên \(\widehat{CKB}=90^0\)
-Xét △CKB và △CMI có:
\(\widehat{ICM}\) là góc chung.
\(\widehat{CKB}=\widehat{CMI}=90^0\)
\(\Rightarrow\)△CKB ∼ △CMI (g-g).
\(\Rightarrow\dfrac{CK}{CM}=\dfrac{CB}{CI}\)(2 tỉ lệ tương ứng).
\(\Rightarrow CK.CI=CB.CM\)
\(\Rightarrow BI.BA+CK.CI=BM.BC+CB.CM=BC.\left(BM+CM\right)=BC.BC=BC^2\)
-Do độ dài BC không đổi nên \(BI.BA+CI.CK\) không đổi khi M chuyển động trên BC.
Cho tam giác ABC vuông tại A có AB>AC , M là 1 điểm tùy ý trên cạnh BC . Qua M kẻ Mx vuông góc với BC và cắt AB tại I , cắt tia ca TẠI d
a, CMR tam giác ABc đồng dạng với tam giác MDC
b, CMR BI.BA=BM.BC
c, CI cắt BD tại K . CMR : BI.BA+CI.CK không phụ thuộc vào vị trsi của điểm M
d, Cho góc ACB = 60 độ và Stam giác CBD =60 cm2 . tính S tam giác CMA
cho tam giác ABC vuông tại A có AB>AC lấy điểm M trên đoạn BC . qua M kẻ đường thẳng vuông góc với BC cắt đoạn AB tại I , cắt tia CA tại D chứng minh rằng
a)tam giác ABC ĐỒNG DẠNG VỚI TAM GIÁC MDC
b)BI.BA=BM.BC
a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMD đồng dạng với ΔCAB
b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
góc B chung
=>ΔBMI đồng dạng với ΔBAC
=>BM/BA=BI/BC
=>BM*BC=BA*BI
Cho tam giác ABC vuông tại A có AB > AC, M là 1 điểm tùy ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt đoạn AB tại I và cắt tia CA tại D, CI cắt BD tại K. Chứng minh rằng:
a) D ABC đồng dạng MDC
b) BI. BA = BM. BC
c) BI .BA + CI .CK không phụ thuộc vào vị trí của điểm M.
d) AB là tia phân giác của góc MAK
a, Xét ▲ABC và ▲MDC có:
∠CAB=∠DMC (=90o)
∠DCB chung
=> ▲ABC∼▲MDC (g.g)
b, Xét ▲MBI và ▲ABC có:
∠CAB=∠IMB (=90o)
∠ABC chung
=> ▲MBI∼▲ABC (g.g)
=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC
c, Xét ▲ADB và ▲KIB có:
∠DAB=∠CKB (=90o)
∠DBA chung
=> ▲ADB∼▲KIB (g.g)
=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB
Xét ▲DKC và ▲IAC có:
∠DKC=∠IAC (=90o)
∠DCK chung
=> ▲DKC∼▲IAC (g.g)
=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC
Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi
CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi
nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M
d, Xét ▲BMA và ▲BIC có:
\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)
∠ACB chung
=> ▲BMA ∼▲BIC (c.g.c)
=> ∠BAM=∠BCI
Xét ▲CAI và ▲BKI có:
∠CAI=∠BKI (=90o)
∠AIC=∠KIB (đ.đ)
=> ▲CAI ∼▲BKI (g.g)
=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)
Xét ▲IAK và ▲ICB có:
\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)
∠AIK=∠CIB (đ.đ)
=> ▲IAK ∼▲ICB (g.g)
=> ∠KAB=∠BCI
mà ∠BAM=∠BCI
nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)