Tìm nghiệm của đa thức sau : 15x^3 - 14x^2 + 7x + 8
Các bác giúp em với mai e phải nộp r : tìm nghiệm đa thức 15x^3 + (-14x^2) + 7x+8
Tìm nghiệm của đa thức
A(x)=7x^2-15x+8
B(x)=x^2-5x-6
Giúp mink nha, mink đang cần gấp lắm
7x2 - 15x + 8 = 0
\(\Leftrightarrow\)7x2 - 7x - 8x +8 = 0
\(\Leftrightarrow\)7x.(x - 1) - 8.(x - 1) = 0
\(\Leftrightarrow\)(7x - 8)(x - 1) = 0
\(\Leftrightarrow\)7x - 8 = 0 và x - 1 = 0
\(\Leftrightarrow\) x = 8/7 và x= 1
x2 - 5x - 6 = 0
<=>x2 - x + 6x - 6 = 0
<=>x(x-1) + 6(x-1) = 0
<=> (x+6)(x-1) = 0
<=> x+6 = 0 và x-1 = 0
<=> x = -6, x= 1
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
Phân tích đa thức thành nhân tử (bậc cao)
a) x^3-4x^2+x-6 (gợi ý có 1 nghiệm=2)
b) x^3+7x^2+14x+8 (gợi ý có 1 nghiệm=-1)
Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$
$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$
$=(x-2)(x+1)(x-3)$
-------------------
b.
$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$
$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$
$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$
$=(x+1)(x+2)(x+4)$
Phân tích đa thức thành nhân tử (bậc cao)
a) x^3-4x^2+x-6 (gợi ý có 1 nghiệm=2)
b) x^3+7x^2+14x+8 (gợi ý có 1 nghiệm=-1)
Câu a bạn xem lại đề bài nhé. Đa thức đề cho thậm chí còn không có nghiệm hữu tỉ luôn cơ.
b) Lập sơ đồ Horner:
1 | 7 | 14 | 8 | |
\(x=-1\) | 1 | 6 | 8 | 0 |
\(\Rightarrow x^3+7x^2+14x+8=\left(x+1\right)\left(x^2+6x+8\right)\)
Ta thấy đa thức \(g\left(x\right)=x^2+6x+8\), dự đoán được 1 nghiệm \(x=-2\). Ta lại lập sơ đồ Horner:
1 | 6 | 8 | |
\(x=-2\) | 1 | 4 | 0 |
\(\Rightarrow g\left(x\right)=\left(x+2\right)\left(x+4\right)\)
Vậy đa thức đã cho có thể được phân tích thành \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
Tìm nghiệm của đa thức sau: A(x)= x^2-7x+8
A(x)=x^2+7x-8=0
=x^2+8x-x-8=0
=x^2-x+8x-8=0
=x(x-1)+8(x-1)=0
=(x+8)(x-1)=0
suy ra x+8=0 hoac x-1=0
Vậy x= -8 hoặc x=1
Tìm các giá trị nguyên của x để đa thức A=12x^3-7x^2-14x+14 chia hết cho đa thức B=4x-5
Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²
cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3
Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1
:D
Bài 1 : Cho P(x) là một đa thức có hệ số nguyên và hệ số cao nhất bằng 1. Chứng minh rằng nếu đa thức có nghiệm hữu tỉ thì nghiệm đó phải nguyên.
Bài 2 : Tìm x nguyên để x4 - 7x3 + 14x2 - 7x + 1 là một số nguyên tố
tìm nghiệm của các đa thức sau
a) x2-10+16=0
b) x3+7x2+2x-10=0
c) -3x3+5x2-8=0
d) 2x3-15x2+2x+35=0
mọi người giúp mình nhaks
mai mình thi rùi
a ) Ta có : \(x^2-10+16=0\)
\(\Rightarrow x^2-10=-16\)
\(\Rightarrow x^2=-6\)
Mà \(x^2\ge0\forall x\Rightarrow x^2-10+16\)không có nghiệm
b ) \(x^3+7x^2+2x-10=0\)
\(\Rightarrow x^3+7x^2+2x=10\)
\(\Rightarrow x.\left(x^2+7x+2\right)=10\)
\(\Rightarrow x=10\)
Làm tiếp nhé !!!
c ) \(-3x^3+5x^2-8=0\)
\(\Rightarrow-3x^3+5x^2=8\)
\(\Rightarrow x^2.\left(-3x+5\right)=8\)
\(\Rightarrow x=...\)