TÍnh \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{62}{63}\)
\(\frac{x+1}{64}+\frac{x+2}{63}=\frac{x+3}{62}+\frac{x+4}{61}\)
Chứng tỏ rằng :
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)
A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)
A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)
A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2
A>4
Chứng tỏ:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)
Chứng tỏ:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)
So sánh :
Chứng tỏ rằng :
\(1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}>4\)
\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{32}\right)+\left(\frac{1}{33}+...+\frac{1}{64}\right)\)
\(=1+\frac{1}{2}+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32\)
\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=1+\frac{1}{2}.6\)
\(=1+3\)
\(=4\)
~~ Bố thí cái li.ke ~~
Tính nhanh:
\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)
\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)
\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)
\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)
\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50
\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)
\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)
Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)
CM : S = 1+63+\(\frac{63}{2}+\frac{62}{3}+....+\frac{2}{63}+\frac{1}{64}\)
Lớn hơn 196
Tính \(M=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)
Chứng minh rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{121}-\frac{1}{122}+\frac{1}{123}=\frac{1}{62}+\frac{1}{63}+...+\frac{1}{122}\)-\(\frac{1}{123}\)
Xét \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{123}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{122}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{121}+\frac{1}{123}\right)-2\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{61}\right)\)
\(=\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+...+\frac{1}{123}\)