1. Cho x/y=2 . Tính giá trị biểu thức :
A=\(\frac{2x-y}{x+2y}\)
Cho 2 số thực x và y thoả x+y=1 Tính giá trị biểu thức: A=x⁴-2x³-2x²y²-2y³+x²+y²+y⁴
Cho biểu thức:
\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A khi x = -3 và y = 2014
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
Tính giá trị biểu thức sau:
a) A= (5x-7)(2x+3)-(7x+2)(x-4) tại x=\(\dfrac{1}{2}\)
b) B= (x-2y)(y-2x)+(x+2y)(y+2x) tại x = 2; y = - 2 .
a) Thay `x=1/2` vào A được:
`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`
b) Thay `x=2;y=-2` vào B được:
`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.
a) Với \(x=\dfrac{1}{2}\) ta được:
\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)
\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)
\(\Rightarrow A=\dfrac{5}{4}\)
b) Với \(x = 2; y = - 2 \) ta được :
\(\Leftrightarrow B=\left(2-2\left(-2\right)\right)\left(\left(-2\right)-2.2\right)+\left(2+2\left(-2\right)\right)\left(\left(-2\right)+2.2\right)\)
\(\Leftrightarrow B=-40\)
a)Tính giá trị của biểu thức \(A=x^2y-2xy^2+2x-y-1\)tại\(x=\frac{1}{2};y=-0,75.\)
b)Tính giá trị của biểu thức \(B=\frac{1}{2}x-x^3-3x^2-5x+1\)biết \(\left|1-x\right|=2.\)
cho x,y thảo mãn x^2 + 3y^2 = 4xy. Tính giá trị của biểu thức A= \(\frac{2x+3y}{x-2y}\)
Ta có : \(x^2+3y^2=4xy\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(3y^2-3xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=3y\end{cases}}\)
Với \(x=y\) thì \(A=\frac{2x+3x}{x-2x}=-5\)
Với \(x=3y\) thì \(A=\frac{6y+3y}{3y-2y}=9\)
Ta có:
\(x^2+3y^2=4xy\Leftrightarrow\left(x^2-3xy\right)-\left(xy-3y^2\right)=0\Leftrightarrow\left(x-3y\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3y\\x=y\end{cases}}\)
TH1: x=3y
\(A=\frac{6y+3y}{3y-2y}=\frac{9y}{y}=9\)
TH2: x=y
\(A=\frac{2x+3x}{x-2x}=\frac{5x}{-x}=-5\)
cảm ơn 2 bạn rất nhiều, mình rất muôn bình chọn cho cả 2 nhưng rất tiếc chỉ được 1 bạn. thực ra mình định bình chọn cho bạn làm đầu tiên nhưng mình lại lỡ ấn mất rồi. cho mình xin lỗi nha
Cho các số x,y thỏa mãn đẳng thức
tính giá trị biểu thức M=(x+y)2017+(x-2)2018+(y+ 1)2015
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Cho x^2 + y^2 = 5. tính giá trị biểu thức A = x^4 + 2^2y^2 - 2x^2 + y^4 - 2y^2
1. cho x,y > 0 thỏa mãn 2x2 + 2y2 = 5xy. tính giá trị biểu thức M = \(\frac{x+y}{x-y}\)
ta có 2x2+2y2=5xy
=>2(x+y)2=9xy và 2(x-y)2=xy
M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)
vậy M=3 hoặc M=-3
Ta dùng phương pháp tách đa thức thành nhân tử ta được
=> x+y=2x2+2y2=2(x2+y2)=9xy
=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy
=>M=(x+y)2/(x-y)2=9xy:xy=9
Nên M= cộng trừ căn bậc 2 của 9
giá trị của biểu thức của M là 3 nhá vì x,y > 0
5767657876974684687687698796675362454775676585
Cho A=(x-y). (x²+x+y)-x.(2x² + 2y³)
a. Rút gọn biểu thức A b. Tính giá trị của biểu thức A với x = - 1 ; y = - 5
939393:3=313131 nhoa bẹn
a) \(A=\left(x-y\right).\left(x^2+x+y\right)-x.\left(2x^2+2y^3\right)\)
\(=x^3+x^2+xy-x^2y-xy-y^2-2x^3-2xy^3\)
\(=-x^3-y^2-2xy^3\)
b) Ta thay \(x=-1;y=-5\)
\(-x^3-y^2-2xy^3\)
\(=-\left(-1\right)^3-\left(-5\right)^2-2.\left(-1\right).\left(-5\right)^3\)
\(=1-25-250\)
\(=-274\)