Cho A= 2014^0+2014^1+2014^2+.....+2014^2014. Tìm số dư khi A chia cho 2015
Bài 1: Tìm số dư của:
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015 - 2013^2014 khi chia cho 10
Tìm số dư của :
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015-2013^2014 khi chia cho 10
a) ChoA=2014+20142+20143+20144...+20142014.Chứng tỏ A chia hết cho 2015
b) Tìm các số tự nhiên n sao cho 6 chia hết cho (n-1)
a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014
A = ( 2014 + 20142 ) + ( 20143 + 20144 ) + ..... + ( 20142013 + 20142014 )
A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )
A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015
A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015
b) Ta có 6 chia hết cho n - 1
=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }
Nếu n - 1 = 1 => n = 2 (tm)
Nếu n - 1 = 2 => n = 3 (tm)
Nếu n - 1 = 3 => n = 4 (tm)
Nếu n - 1 = 6 => n = 7 (tm)
Vậy n thuộc { 2 ; 3 ; 4 ; 7 }
Mk ko chắc là đúng
hok tốt
Câu hỏi:
a) Chứng minh: 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015
b) Tìm số nguyên sao cho 4n + 1 chia hết cho n + 1
a)2014 + 2014^2 + 2014^3 + ... + 2014^10
=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)
=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)
=2014.2015+2014^3.2015+...+2014^9.2015
vì 2014.2015 chia hết cho 2015
2014^3.2015 chia hết cho 2015
.....
2014^9.2015 chia hết cho 2015
=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015
vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015
a,2014+20142+20143+....+201410
=(2014+20142)+(20143+20144)+.....+(20149+201410)
=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)
=2014.2015+20143.2015+..........+20149.2015
=2015.(2014+20143+...........+20149) \(^._:\)2015 (đpcm)
b,4n+1\(^._:\)n+1
4n+4 -3\(^._:\)n+1
Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1
=>n+1\(\in\){1; -1; 3; -3}
n+1 | n |
1 | 0 |
-1 | -2 |
3 | 2 |
-3 | -4 |
KL: n\(\in\){0; 2; -2; -4}
a, so sánh
M=2013/2014+2014/2015 va N=2013+2014/2014+2015
b, tìm số tự nhiên n sao cho n+3 chia hết cho n^2+1
Tìm số dư trong phép chia:
A=2012^2013+2013^2014+2014^2015 cho 13
Mình làm,trong quá trình làm,sẽ có khi tính sai sót,về cơ bản,hướng làm là vậy. Bạn tự làm lại cho bài toán hoàn thiện và ko bị sai sót như mình nhé:)
\(2012^{2013}\equiv\left(2012^4\right)^{503}.2012\equiv3^{503}.2012\)
\(\equiv\left(3^4\right)^{125}.3^3.2012\equiv3^{128}.2012\equiv\left(3^4\right)^{32}.2012\)
\(\equiv3^{32}.2012\equiv\left(3^4\right)^8.2012\equiv\left(3^4\right)^2.2012\)
\(\equiv3^2.2012\equiv12\) (mod 13)
Lại có: \(2013^{2014}\equiv\left(2013^4\right)^{503}.2013^2\equiv3^{503}.4\)
\(\equiv\left(3^4\right)^{125}.3^3.4\equiv3^{128}.4\equiv3^{32}.4\equiv\left(3^8\right)^4.4\)
\(\equiv9^4.4\equiv9.4\equiv10\)
Lại có: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\)
Mà ta có \(2014^2\equiv1\left(mod13\right)\Rightarrow2014^{30}=\left(2014^2\right)^{15}\equiv1\)
\(\Rightarrow2014^{31}\equiv2014\equiv12\left(mod13\right)\) do vậy: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\)
Mà ta có: \(12\equiv-1\left(mod13\right)\Rightarrow12^{65}\equiv-1\left(mod13\right)\)
Nên \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\equiv-1\) (mod 13)
Suy ra \(A\equiv12+10-1\equiv21\equiv8\left(mod13\right)\)
Hay A chia 13 có số dư = số dư của 8 chia 13 = 8
Vậy..
BÀI 1,Chứng minh: Số 1280000401 là hợp số
BÀI 2,Tìm số dư cho phép chia của số :
A=(2014+1)(2014+2)(2014+3)......(2014+4028) cho 32014
Cho A=2015/2014^2+1+ 2015/2014^2+2+....2015/2014^2+2014.CMR: A ko pải số nguyên dươg
Cho A = \(\dfrac{2015}{2014^2+1}+\dfrac{2015}{2014^2+2}+\dfrac{2015}{2014^3+3}+....+\dfrac{2015}{2014^2+2014}\)
Chứng minh rằng A không là số nguyên dương
Các bạn ơi , giúp mình với T T