Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn nam dũng
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
kiara- Hồ Hách Nhi
Xem chi tiết
Diệp Băng Dao
3 tháng 12 2018 lúc 16:31

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt

Trần Mai Phương
Xem chi tiết
Minh Triều
18 tháng 6 2015 lúc 13:45

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

Hồ Thu Giang
18 tháng 6 2015 lúc 13:45

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

tranthihuyen
Xem chi tiết
Lê Trí Cường
Xem chi tiết
Lê Trí Cường
19 tháng 6 2019 lúc 9:12

dùng đồng dư nhé

Lê Trí Cường
19 tháng 6 2019 lúc 9:35

ai làm đúng mình k cho

tth_new
19 tháng 6 2019 lúc 10:10

Mình làm,trong quá trình làm,sẽ có khi tính sai sót,về cơ bản,hướng làm là vậy. Bạn tự làm lại cho bài toán hoàn thiện và ko bị sai sót như mình nhé:)

\(2012^{2013}\equiv\left(2012^4\right)^{503}.2012\equiv3^{503}.2012\)

\(\equiv\left(3^4\right)^{125}.3^3.2012\equiv3^{128}.2012\equiv\left(3^4\right)^{32}.2012\)

\(\equiv3^{32}.2012\equiv\left(3^4\right)^8.2012\equiv\left(3^4\right)^2.2012\)

\(\equiv3^2.2012\equiv12\) (mod 13)

Lại có: \(2013^{2014}\equiv\left(2013^4\right)^{503}.2013^2\equiv3^{503}.4\)

\(\equiv\left(3^4\right)^{125}.3^3.4\equiv3^{128}.4\equiv3^{32}.4\equiv\left(3^8\right)^4.4\)

\(\equiv9^4.4\equiv9.4\equiv10\)

Lại có: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\)

Mà ta có \(2014^2\equiv1\left(mod13\right)\Rightarrow2014^{30}=\left(2014^2\right)^{15}\equiv1\)

\(\Rightarrow2014^{31}\equiv2014\equiv12\left(mod13\right)\) do vậy: \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\)

Mà ta có: \(12\equiv-1\left(mod13\right)\Rightarrow12^{65}\equiv-1\left(mod13\right)\)

Nên \(2014^{2015}\equiv\left(2014^{31}\right)^{65}\equiv12^{65}\equiv-1\) (mod 13) 

Suy ra \(A\equiv12+10-1\equiv21\equiv8\left(mod13\right)\)

Hay A chia 13 có số dư = số dư của 8 chia 13 = 8

Vậy..

joong kook
Xem chi tiết
Nguyễn Khánh Linh( Pengu...
Xem chi tiết
crewmate
Xem chi tiết