Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Anhh
Xem chi tiết
Nguyễn Huy Tú
17 tháng 7 2021 lúc 16:28

undefined

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:07

Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Nguyễn Dương Tùng Duy
Xem chi tiết
Nguyễn Dương Tùng Duy
Xem chi tiết
Phạm Thị Mai Thi
Xem chi tiết
Nguyễn Ngọc Quý
6 tháng 1 2016 lúc 10:20

S = 1 x 2 + 2 x 3 + ... + 99 x 100

3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)

3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100

3S = 99 x 100 x 101 = 999900

S = 999900 : 3 = 333300

Nguyễn Hưng Phát
6 tháng 1 2016 lúc 10:21

3S=1*2*3+2*3*(4-1)+3*4*(5-2)+.......+99*100*(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+..........+99*100*101-98*99*100

S=99*100*11:3

S=333300

Nguyễn Hưng Phát
6 tháng 1 2016 lúc 10:24

Bạn sửa ở S=99*100*11 thanh 99*100*101

Phùng Văn Hoàng
Xem chi tiết
Nguyễn Thị Hương
7 tháng 1 2016 lúc 20:26

Số số hạng :

(100-1):1+1=100(số hạng)

Tổng bằng:

(100+1)x(100:2)=5050

Nguyễn Ngọc Bảo Trân
7 tháng 1 2016 lúc 20:26

Bài này đâu phải tổng đâu bạn 

Nguyễn Ngọc Bảo Trân
7 tháng 1 2016 lúc 20:33

S=1*2+2*3+3*4+....+99*100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3S = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) +....+ 99.100.(101 - 98 ) 
3S = 1.2.3 - 1.2.0 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + .... + 99.100.101 - 99.100.98 
3S = 99.100.101 
3S = 999900 
=> S = 999900 : 3 = 333300 
Vậy S = 333300 

Bùi Đình Nam
Xem chi tiết
Trà My
18 tháng 3 2017 lúc 10:38

\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3S=1.2.3.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3S=99.100.101\)

\(S=\frac{99.100.101}{3}\)

\(S=33.100.101\)

Lê Quang Trường
18 tháng 3 2017 lúc 10:36

S = 1*2+2*3+3*4+...+99*100

3S=1*2(3-0)+2*3(4-1)+3*4(5-2)+...+99*100(101-98)

3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+99*100*101-98*99*100

3S=99*100*101

S=(99*100*101):3

S=333 300

Bui Hong HUYEN dieu
Xem chi tiết
Vũ Duy Bảo
15 tháng 12 2017 lúc 22:47

Cấu a:G/s các số hạng đề là dương

số số hạng của dãy là :(100-1):1+1=100 số

ta thấy 2 số liền kề nhau có tổng =1

==> có 100:2=50 cặp 

==> tổng là 1x50=50

câu 2 bạn lầm giống câu 1

Nguyễn Anh Thư
Xem chi tiết
o0o ngốc 7A1 o0o
7 tháng 4 2016 lúc 5:07

mk bó tay sorry

456547

Phú Quý Lê Tăng
9 tháng 1 2021 lúc 23:10

Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S

\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)

Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)

Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)

Do đó

 \(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)

\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)

Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))

Khách vãng lai đã xóa
Quốc Lê Minh
Xem chi tiết
Mai Hương Giang
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 8 2016 lúc 10:59

S= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/99.100

  =1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

  =1-1/100

  =99/100

soyeon_Tiểu bàng giải
2 tháng 8 2016 lúc 11:00

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)

Edogawa Conan
2 tháng 8 2016 lúc 22:00

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)