Cho phân số A=\(\frac{6n-1}{3n+2}\) Tìm n để A đạt giá trị lớn nhất.
tìm n thuộc N để phân số :
P=\(\frac{3n+2}{6n-6}\)đạt giá trị lớn nhất .tìm giá trị lớn nhất đó !
cho A= 6n+2022 /3n+5
a, tìm n để A có giá trị là số nguyên
b,tìm n để A đạt giá trị lớn nhất
c,tìm n để A đạt giá trị nhỏ nhất
Cho A= 6n+2022/3n+5 ( với n là số tự nhiên)
Tìm n để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
tìm n thuộc N để phân số : P=3n+2/6n-6 đạt giá trị lớn nhất .tìm giá trị lớn nhất đó !
ai làm nhanh nhất mk sẽ tk cho 3 tk ! nha! !!!!!^_^ %_% #_# @_@ !_ !
cho phân số A=6n-1/3n+2
a/ tìm n thuộc z để a nguyên
b/ tìm n thuộc z để a đạt giá trị nhỏ nhất
Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2
=> Đẻ Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)
ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"
Vì n thuộc Z nên n= -1
thật ra ko cần kẻ bảng cũng được. tự nhẩm thôi
cho phân số A = 3n+5 / 6n { n thuộc N ; n khác 0 } với giá trị nào của n để phân số A có giá trị lớn nhất tìm giá trị lớn nhất ấy
Cho B=\(\frac{6n-5}{3n+1}\)
a)Tìm các số ngyên N để A có giá trị nguyên
b)Tìm n để B đạt giá trị nhỏ nhất
\(B=\frac{6n-5}{3n+1}\inℤ\)
=> 6n - 5 ⋮ 3n + 1
=> 6n + 2 - 7 ⋮ 3n + 1
=> 3(3n + 1) - 7 ⋮ 3n + 1
=> 7 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(7)
=> 3n + 1 thuộc {-1; 1; -7; 7}
=> 3n thuộc {-2; 0; -8; 6}
=> n thuộc {0; 2} vì n thuộc Z
a) Để \(B\inℤ\)
\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)
\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)
\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)
Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)
nên \(-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)
\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(3n+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(0\) | \(-\frac{2}{3}\) | \(2\) | \(-\frac{8}{3}\) |
Vậy \(n\in\left\{0;2\right\}\)
Để \(B\in Z\)
\(6n-5⋮3n+1\)
\(6n+2-7⋮3n+1\)
\(3\left(3n+1\right)-7⋮3n+1\)
Mà \(3\left(3n+1\right)⋮3n+1\)
\(\Rightarrow-7⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(-7\right)=\left\{\mp1;\mp7\right\}\)
Lập bảng xét giá trị là xong
Tìm n thuộc Z sao cho phân số sau đạt giá trị nhỏ nhất: \(A=\frac{6n-1}{3n+2}\)
Cho phân số A = \(\frac{6n-4}{2n+3}\)n thuộc Z
a, Tìm n để A nhận giá trị là số nguyên
b, tìm n để A đạt giá trị lớn nhất và tính giá trị đó
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2