Tìm các số tự nhiên a, b, c khác không sao cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
a, Tìm các số tự nhiên a,b sao cho :\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
b, Tìm các số tự nhiên a,b,c sao cho: \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
c, Tìm các chữ số a,b,c khác nhau sao cho: a,bc:(a+b+c)=0,25
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
tìm các số tự nhiên a,b,c sao cho a^2 <=b;b^2<=c;c^2<=a
Tìm 3 số tự nhiên a, b, c khác 0 sao cho tổng nghịch đảo của các số đó là 1 số tự nhiên.
(Tức là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) có giá trị là 1 số tự nhiên)
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.
tìm các bộ gồm 3 số tự nhiên a,b,c khác 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
1/ Tìm các số tự nhiên \(a,b,c\)sao cho:
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
2/ Tìm các chữ số a, b, c khác nhau sao cho:
a,bc : (a + b + c) = 0,25
\(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}\)
\(=5+\frac{1}{1+\frac{2}{7}}\)
\(=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}\)
\(=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1,b=3,c=2\)
Bài 1: Cho a,b,c là số nguyên dương. Chứng tỏ s không là số tự nhiên :
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Bài 2 : Tìm các số tự nhiên a,b,c sao cho:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Cho a,b,c là ba số tự nhiên khác nhau thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=n (với n là một số tự nhiên ) . Tìm các số a,b,c
Tìm bộ ba số tự nhiên khác không (a, b, c) sao cho:
\(\frac{1}{a}\)\(+\)\(\frac{1}{a+b}+\frac{1}{a+b+c}=1\)
ĐKXĐ: \(a\ne0;\)\(a+b\ne0;\)\(a+b+c\ne0\)
Vì 3 số a,b,c là 3 số tự nhiên
\(\Rightarrow\)\(\frac{1}{a}\ge a+b;\)\(\frac{1}{a}\ge\frac{1}{a+b+c}\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
\(\Rightarrow\)\(0< a\le3\)
Sau đó bn xét từng trường hợp a = 1,2,3 để giải biểu thức trên là xong nhé
tìm 3 số tự nhiên a,b,c khác 0 sao cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Ta có :4/5=8/10=(1+2+5)/10=1/10+2/10+5/10=1/10+1/5+1/2.
Vì a,b,c có vai trò như nhau =>a=10;b=5;c=2
ai làm đúng nhanh chi tiết thì mình k cho hehe
Ta có :4/5=8/10=(1+2+5)/10=1/10+2/10+5/10=1/10+1/5+1/2.
Vì a,b,c có vai trò như nhau =>a=10;b=5;c=2
Ai đó k mik đi!
Tìm các số tự nhiên a,b,c,d sao cho:
\(\frac{30}{43}=\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.