Cho tam giác ABC ba điểm M,N,P lần lượt thuộc AB,BC,AC Sao cho BM/BC=CN/CA=AP/AB và BM/BC<1/2 Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC, ba điểm M, N, P lần lượt thuộc BC, CA, AB sao cho BM/BC = CN/CA = AP/AB và BM/BC < 1/2. Chứng minh tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC với ba điểm M,N,P lần lượt thuộc các cạnh BC,CA,AB sao cho BM/BC=CN/CA=AP/AB và BM/BC < 1/2. Chứng minh rằng hai tam giác ABC và tam giác MNP có cùng trọng tâm
Cho tam giác ABC với ba điểm M,N,P lần lượt thuộc các cạnh BC,CA,AB sao cho BM/BC=CN/CA=AP/AB và BM/BC < 1/2. Chứng minh rằng hai tam giác ABC và tam giác MNP có cùng trọng tâm
Cho tam giác ABC. Lấy M, N, P lần lượt thuộc canh AC, AB, BC sao cho CM/AC=BP/BC=AN/AB=1/3. Gọi I là giao điểm của BM và CN. Gọi E là giao điểm của CN, AP. GỌi F là giao điểm của AP, BM. CHứng minh Seif=Simc+Sfbp+Snea
Cho tam giác ABC. M thuộc AB, N thuộc AC sao cho BM=CN. I;K theo thứ tự là trung điểm của MN và BC, IK cắt AB,AC lần lượt tại P và Q. Chứng minh AP=AQ.
Cho tam giác ABC, AB<AC, trên tia BA và CA lần lượt lấy M và N sao cho BM=CN, trên cạnh AC lấy điểm D sao cho CD=AB. Chứng minh rằng: Ba đường trung trực của AD,MN,BC cùng đi qua một điểm
Gọi E là giao điểm các đường trung trực của MN và BC.
Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).
Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).
Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).
Lại có BM = CN và AB = CD nên AM = ND.
Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)
\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).
Suy ra E thuộc đường trung trực của MN.
Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.
Cho tam giác ABC đều có cạnh bằng 12(cm). Gọi M, N, P lần lượt là ba điểm trên ba cạnh
BC, CA, AB sao cho BM = 2(cm), CN = 3(cm), AP = 4cm.
a) Tính diện tích các tam giác ABC và ANP.
b) Tính diện tích tam giác MNP.
Bài 2: Cho tam giác ABC, trên tia đối của các tia BA, CB, AC lấy M, N, P sao cho BM =
BA, CN = CB, AP = AC. Chứng minh SMNP = 7SABC .
Bài 3: Cho tam giác ABC. Lấy điểm M, N, P lần lượt thuộc cạnh AC, AB, BC sao cho \(\frac{CM}{AC}=\frac{BF}{BC}=\frac{AN}{AB}=\frac{1}{3}\)
Gọi I là giao điểm của BM, CN. Gọi E là giao điểm của CN,
AP. Gọi F là giao điểm của AP, BM. Chứng minh : SEIF = SIMC + SFBP + SNEA
Bài 3 :Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN( \(I\ne M,I\ne N\). )Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.
Bài 2:
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)
anhdun_•Ŧ๏áйツɦọς•
Ý thưc không mua được = tiền
Cop thì phải gửi link hoặc đường dẫn nhé bạn