Cho
\(y=\frac{5^{125}-1}{^{5^{25}}-1}\)
Chứng minh Y là một hợp số.
Chứng minh rằng: \(\frac{5^{125}-1}{5^{25}-1}\)là hợp số
Chứng minh : là\(\frac{5^{125}-1}{5^{25}-1}\) 1 hợp số
Chứng minh rằng A\(=\frac{5^{125}-1}{5^{25}-1}\)
Là hợp số
5^125 là số lẻ trừ 1 là số chẵn=>5^125-1 là hợp số(1)
5^25 là số lẻ trừ 1 là số chẵn=>5^25-1 là hợp số(2)
mà 5^125-1 và 5^25-1 lớn hơn 2 (3)
từ (1),(2) và (3)
=>5^125-1
____________
5^25-1 là hợp số
Câu trả lời của vu quang anh sai đấy .Bạn phải cm 5^125-1 chia hết cho 5^25-1
Bạn vu quang anh giải sai rồi, lỡ như 1 số chẵn không chia hết cho 1 số chẵn thì sao (chẳn hạn: 6/4=3/2 không là số nguyên)
Còn nữa: nếu như chia hết, nó ra 1 số lẻ (như 6/2 = 3 - là 1 số lẻ)
Chứng minh N = 5^125 - 1/ 5^25 - 1 là hợp số
Bài 1: Chứng minh A= \(\frac{5^{125}-1}{5^{25}-1}\)Là hợp số.
Bài 2: Tìm các số nguyên tố p để \(p^2+2^p\)là số nguyên tố.
Đặt 525 = a thì
\(A=\frac{a^5-1}{a-1}=\frac{\left(a-1\right)\left(a^4+a^3+a^2+a+1\right)}{a-1}=a^4+a^3+a^2+a+1\)
\(=\left(a^2+3a+1\right)^2-5a\left(a+1\right)^2\)
\(=\left(a^2+3a+1\right)^2-5^{26}\left(a+1\right)^2\)
\(=\)[a2 + 3a + 1 + 513 (a + 1)][a2 + 3a + 1 - 513 (a + 1)]
Đây là tích hai số khác 1 nên A là hợp số
\(A=\frac{5^{25.5}-1}{5^{25}-1}\)=\(\frac{a^5-1}{a-1}\) =\(\frac{\left(a-1\right)\left(a^4+a^3+a^2+a^1+1\right)}{a-1}\)=\(\left(a^4+a^3+a^2+a^1+1\right)\)
voi a=5^25
=> A co tan cung =4 luon chia het cho2 => A la hop so
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3.
Lại vì p lẻ nên 2^p + 1 chia hết cho 3.
Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3
=> 2^p + p^2 là hợp số.
Vậy p = 3
a) Cho BCNN(x,y)=720, x+y=9 Tìm x/y
b)Tính 1-3+5-7+9-11+.....+2013-2015+2017
c)Cho S=6+25+125+5^4+...+5^2015
+)Chứng minh 4S+1 chia hết cho 5^2016
+)Chứng minh S chia hết cho 6
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
1.một số nguyên tố p chia cho 42 có số dư là r là hợp số.tìm r ?
2.chứng minh 10^5000+125 chia hết cho 5 và cho 9 ?
3.tìm số tự nhiên a;b biết a.b=300 và bcnn(a;b)=60
4.5^4.2^4=10^4 đúng hay sai ?
5.tìm x,y biết x.y=8 ?
1.
Ta có p = 42k r = 2.3.7.k + r ( k,r \(\in\)N , 0 < r < 42 )
Vì p là số nguyên tố nên r không chia hết cho 2, 3, 7.
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.
Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.
Vậy r = 25.
2) Ta có : 10^5000 + 125=100...00+125=100...00125
Có tổngcác chữ số là 1+1+2+5=9 chia hết cho 9
Do 10^500 chia hết cho 125 và 125 chia hết cho 125
=> 10^5000+125 chia hết cho 5
Cho x, y, z là các số thực dương thỏa mãn \(x+y+z=18.\)
Chứng minh rằng: \(\frac{y+z+5}{1+x}+\frac{z+x+5}{1+y}+\frac{x+y+5}{1+z}\ge\frac{51}{7}\)
\(\text{Ta có:}\)
\(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\left(x,y,z>0\right)\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)
\(\frac{y+z+5}{1+x}+\frac{z+x+5}{1+y}+\frac{x+y+5}{1+z}\)
\(=\frac{x+y+z+6}{1+x}+\frac{x+y+z+6}{1+y}+\frac{x+y+z+6}{1+z}-3\)
\(=\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}-3\ge\frac{51}{7}\Leftrightarrow\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}\ge\frac{72}{7}\)
\(24\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge24\left(\frac{9}{x+1+y+1+z+1}\right)\)
\(=24\left(\frac{9}{21}\right)=\frac{24.9}{21}=\frac{8.9}{7}=\frac{72}{7}\)
Bài toán đã được chứng minh
\(\text{Thêm dấu "=" xảy ra khi: x=y=z=6 nha! =((}\)
1.Chứng tỏ rằng 316 - 1 chia hết cho 2 và 5
2.Thay các chữ số x , y bằng các chữ số thích hợp
a, Số 257x chia hết cho 5 ; 25 ; 125
b, Số 9xy4 chia hết cho 2 ; 4 ; 8
2,
a, để 257x chia hết cho 5 => x = 0; 5
TH1 : 2570 chia hết cho 5
2570 ko chia hết cho 25
2570 ko chia hết cho 125
TH2: 2575 chia hết cho 5
2575 chia hết cho 25
2575 ko chia hết cho 125
=> x thuộc rỗng
=> c **** ng` khác, ko lm nữa
316=.....1
316-1=....0
tận cùng là 0 nên chia hết cho 2 và 5