Chứng minh N = 5^125 - 1/ 5^25 - 1 là hợp số
tính :
\(\left(8x^3-\frac{1}{125}y^3\right):\left(4x^2+\frac{1}{25}y^2+\frac{2}{5}xy\right)\)
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Chứng minh các số sau là hợp số :
a) \(1+2^7+3^{11}+5^{13}+7^{17}+11^{19}\)
b)\(21^{123}+23^{124}+25^{125}\)
Bài 1. Cho x; y; z là các số thực dương thỏa mãn: x + y + z = 1. Tìm giá trị lớn nhất của biểu thức:
P = \(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)
Bài 2: Giả sử các số x; y thỏa mãn: \(x^5+y^5=2x^2y^2\)
Chứng minh rằng: 1 - xy là bình phương của một số hữu tỷ
Bài 3: Cho \(\frac{n}{n^2-n+1}=a\). Tính P = \(\frac{n^2}{n^4+n^2+1}\)theo a.
Cho x,y là cấc số hữu tỉ khác 0 thỏa mãn \(x^5+y^5 = 2x^3y^3\) . Chứng minh nếu m=1-\(\frac{1}{xy}\)thì m là bình phương của 1 số hữu tỉ
cho x,y là hai số hữu tỉ khác 0 thỏa mãn
x5+y5=2x3y3
chứng minh rằng \(1-\frac{1}{xy}\) là bình phương của 1 số hữu tỉ
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
a) Cho 3 số x,y,z biết x.y.z=1. Tính tổng: \(\frac{5}{x+x.y+1}+\frac{5}{y+y.z+1}+\frac{5}{z+z.x+1}\)
b) Cho 3 số x,y,z biết x.y.z=1992. Chứng minh: \(\frac{1992.x}{x.y+1992.x}\)+\(\frac{y}{y.z+y+1992}\)+\(\frac{z}{x.z+z+1}\)=1