bài 5: Tính tổng \(S=\frac{1+2+2^2+2^3+....+2^{2008}}{1-2^{2009}}\)
tính tổng sau :\(c=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\)\(\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
Tính tổng S=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều:3
Tính tổng S
\(S=\frac{1+2+2^2+....+2^{2008}}{1-2^{2009}}\)
tính tổng S=1+2+2^2+2^3+.....+2^2008 / 1-2^2009
-1
mình ko chắc đâu đó nha,bài này mình chỉ làm có mấy lần à,sai thì cho mình xin lỗi nhé T_T
Tử = 1+2+2^2+2^3+...+2^2008
2Tử = 2+2^2+2^3+...+2^2009
=> 2Tử-Tử=2^2009-1
S= (2^2009-1)/(1-2^2009)=-1
Tính tổng S=1+2+2^2+2^3+...+2^2008/1-2^2009
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)
Tính tổng : \(S=\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)
ta có:2 tử(1+2+22+...+22008).2+
=2+22+23+...+22008+22009
2 tử - tử= tử
2+22+2^3+...+2^2008+2^2009-1+2+2^2+...+2^2008=2^2009-1
tử = 2^2009-1 mẫu = 1-2^2009 vậy s=-1
\(S=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2008}+\frac{1}{2009}}\)
S=?
dang phuong thao la loai copy cua olm ma
Tính tổng S= \(\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Giúp mình với mình đang cần gấp!!!
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$