Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trà My
Xem chi tiết
Hồ Thị Diệu Linh
17 tháng 5 2017 lúc 19:36

=1/2.(1+1/1.3).(1+1/2.4).(1+1/3.5)...(1+1/2014.2016)

=1/2.(1+1/1-1/3).(1+1/3-1/5)...(1+1/2014-1/2016)

=1/2.1+(1/1-1/2016)

=1/2.2015/2016

=2015/4032

Nguyễn Bình An
13 tháng 7 2017 lúc 19:08

sai roi

Nguyễn Bình An
13 tháng 7 2017 lúc 19:09

saaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai

Lê Ánh Huyền
Xem chi tiết
Nhật Minh
8 tháng 4 2016 lúc 21:30

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{2015^2}{2014.2016}=\frac{\left(2.3.4......2015\right)}{\left(1.2.3......2014\right)}.\frac{\left(2.3.4.....2015\right)}{\left(3.4.5......2016\right)}=\frac{2015}{1}.\frac{2}{2016}=\frac{2015}{1008}\)

Lê Ánh Huyền
Xem chi tiết
Sine_cute
8 tháng 4 2016 lúc 21:38

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)

\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\frac{1}{1008}\)

\(A=\frac{2015}{1008}\)

Lê Ánh Huyền
Xem chi tiết
Bùi Minh Anh
8 tháng 4 2016 lúc 20:58

Ta có :

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}............\frac{2015^2}{2014.2016}\)\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...........\frac{2015.2015}{2014.2016}=\frac{2.2015}{2016}=\frac{2015}{1008}\)

k cho mình nha

Nguyễn Thanh Hiền
Xem chi tiết
Đinh Đức Hùng
19 tháng 3 2017 lúc 20:12

Ta có công thức :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)

\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

Bùi Long Thiện Bách
19 tháng 3 2017 lúc 20:19

=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)

=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)

=1/2(2+1/1-1/3)...(2+1/2014-1/2016)

=1/2*(1/1-1/2016)

=3023/4032

Duy Nguyễn
Xem chi tiết
Irene
Xem chi tiết
Hồ Bảo Vi
20 tháng 4 2018 lúc 22:43

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..\left(1+\frac{1}{2014.2016}\right)\)

\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{2015.2015}{2014.2016}\)

\(=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4.3.5...2014.2016}\)

\(=\frac{\left(2.3.4..2015\right)\left(2.3.4..2015\right)}{\left(1.2.3..2014\right)\left(3.4.5..2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

Vậy \(C=\frac{2015}{1008}\)

Vũ Thị Nam Tú
18 tháng 3 2019 lúc 21:30

2015/2016

C=\(\frac{2015}{1008}\)

Khách vãng lai đã xóa
Nguyễn Lê Nhật Tiên
Xem chi tiết
Sooya
10 tháng 4 2018 lúc 18:22

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)

\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)

\(=\frac{2014\cdot2}{1\cdot2015}\)

\(=\frac{4028}{2015}\)

Nguyễn Văn Cao
Xem chi tiết
Lê Thị Mỹ Hằng
9 tháng 4 2017 lúc 11:51

2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)

2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)

2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)

2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)

2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)

2A = \(\frac{4032}{2017}\)

A = \(\frac{4032}{2017}\)\(:2\)

A = \(\frac{2016}{2017}\)