Biết b>a>0 và 3a^2 + b^2=4ab. Tính a-b/a+b
Biết b>a>0 và 3a^2 + b^2=4ab. Tính a-b/a+b
Cho b>a>0. Thỏa mãn: 3a^2 +b^2 =4ab
Tính A= a-b/a+b
3a^2 + b^2 - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3 - b) / (b/3 + b)
Rút gọn ta được: A = (1/3 - 1) / (1/3 + 1) = -1/2
cho a,b là số dương và 3a^2+ b^2=4ab tính (a-b)/(a+b)
cho b>a>0 và \(3a^2+b^2=4ab\)
tính giá trị của biểu thức : \(\frac{a-b}{a+b}\)
Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)
\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)
Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)
theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.
\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)
P/s: Không biết cách trình bày có đc không a~
Tính giá trị biểu thức
A=3a-4ab-b với |a|=2 và b=-0,5
B=2x mũ 2-5x+1 biết |x|=1/3
A = 3a - 4ab - b với |a| = 2 và b = -0,5
Ta có: \(\left|a\right|=\orbr{\begin{cases}a=2\\a=-2\end{cases}}\)
+) a = 2
A = 3.2 - 4.2.(-0,5) - (-0,5)
A = 21/2
+) a = -2
A = 3.(-2) - 4.(-2).(-0,5) - (-0,5)
A = -21/2
B = 2x2 - 5x + 1 biết |x| = 1/3
Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
+) x = 1/3
B = 2.(1/3)2 - 5.1/3 + 1
B = -4/9
+) x = -1/3
B = 2.(-1/3)2 - 5.(-1/3) + 1
B = 26/9
Cho hai số thực a,ba,b thỏa mãn \(a^2+4ab-5b^2=0\)(a≠b,a≠−b) Tính giá trị của biểu thức
Q=\(\dfrac{2a-b}{a-b}+\dfrac{3a-2b}{a+b}\)
`a^2+4ab-5b^2=0`
`<=>a^2+4ab+4b^2-9b^2=0`
`<=>(a+2b)^2-9b^2=0`
`<=>(a+2b-3b)(a+2b+3b)=0`
`<=>(a-b)(a+5b)=0`
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-5b\end{matrix}\right.\)
`Q={2a-b}/{a-b}+{3a-2b}/{a+b}`
Với `a=b` `=>` giá trị vô nghĩa
Với `a=-5b`
`Q={-10b-b}/{-5b-b}+{-15b-2b}/{-5b+b}`
`Q={-11b}/{-6b}+{-17b}/{-4b}`
`Q=11/6+17/4`
`Q=73/12`
cho b>a>0 ,3a2+b2=4ab. Tinh (a-b)/(a+b)
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12.
b) Tính (a + b)2, biết a – b = 20 và a.b = 3.
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
chứng minh rằng : (a+b)^2 = (a-b)^2 + 4ab
áp dụng tính (a+b)^2 biết a-b=10 và ab=0