Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh HIếu Nguyễn
Xem chi tiết
Hoai Nam
Xem chi tiết
shitbo
28 tháng 11 2018 lúc 15:24

a,Gọi d là UCLN(2n+1;3n+2)

Ta có:

3n+2 chia hết cho d

2n+1 chia hết cho d

=> 2(3n+2)-3(n+1)=1 chia hết cho d

=> d E {-1;1}

=> 2n+1 và 3n+2 luôn nguyên  tố cùng nhau

=> BCNN(2n+1,3n+2)=(2n+1)(3n+2)  (ĐPCM)

b, Gọi a là UCLN(2n+1;9n+6)

=> 2n+1 chia hết cho a

9n+6 chia hết cho a

=> 2(9n+6)-9(2n+1) chia hết cho a

=> 3 chia hết cho a=> a E {3;-3;1;-1}

Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc

2n+1 chia hết cho 3 <=> n=3k+1 (k E N)

Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1

còn nếu n khác: 3k+1

=> UCLN(2n+1;9n+6)=1

Đặng Quốc Huy
Xem chi tiết
Nguyễn Thành Trương
29 tháng 1 2019 lúc 14:06

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.

Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.

Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)

- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.

và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.

Do đó ƯCLN(2n - 2 ; 9n + 4) = 17

- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1

Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

Nguyễn Thảo Hiền Tài
Xem chi tiết
Hà Minh Hằng
Xem chi tiết
son goku
Xem chi tiết
Võ Thạch Đức Tín 1
3 tháng 9 2016 lúc 15:14

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17 ⇔ n - 9 ⋮   17  ⇔ n = 17k + 9 (k ∈N).

Nếu n = 17k + 9 thì 2n - 1  ⋮  17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85  ⋮  17, do đó (2n - 1, 9n + 4) = 17.

Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.

soyeon_Tiểu bàng giải
3 tháng 9 2016 lúc 15:15

Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc N)

Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17

Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1

Nguyễn Nhật Anh
Xem chi tiết
Lâm Duy Thành
21 tháng 8 2023 lúc 10:30

Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d 

⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d 

⇒d=1 hoặc d= 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1

Linh nhi Nguyễn
17 tháng 1 2024 lúc 15:49

Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d 

⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d 

⇒d=1 hoặc d= 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1

Phạm Đức Toàn
13 tháng 1 lúc 12:41

Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d ⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d ⇒d=1 hoặc d= 17 Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17 Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1


Tô Bảo Ngân
Xem chi tiết
Nguyễn Nhật Anh
Xem chi tiết