Tính 1/50x51+1/51x52+...+1/99x100
Tính :1/50x51+1/51x52+......+1/99x100
1/50x51+1/51x52+.....+1/99x100
ta rút gọn còn: 1/50+1/100
= 2/100+1/100
= 3/100
Tính 1/50x51+1/51x52+...+1/99x100
1/50x51+1/51x52+...+1/99x100=1/50-1/51+1/51 - 1/52+.....+1/99 - 1/100
=1/50-1/100
= 2/100-1/100
=1/100
Nha bạn
Tính 1/50x51+1/51/52+........+1/98x99+1/99x100
\(=\frac{1}{50}-\frac{1}{51}+\frac{1}{51}-\frac{1}{52}_{ }+.....-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{50}+\left(\frac{-1}{51}+\frac{1}{51}\right)+.....+\left(\frac{-1}{98}+\frac{1}{98}\right)+\left(\frac{-1}{99}+\frac{1}{99}\right)-\frac{1}{100
}\)
\(=\frac{1}{50}+0+0+....+0+0-\frac{1}{100}\)
\(=\frac{1}{50}-\frac{1}{100
}\)
\(=\frac{1}{100}\)
Nhớ **** cho mình nhé
Tính nhanh B =(1/2x3 + 1/3x4 + 1/4x5 +1/5x6 +1/6x7+1/7x8 + 1/8x9 + .... + 1/50x51) + ( 5/6 + 19/ 20 + 41/42 + 71/72 + .... + 2549/2550 )
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
tính 1/2x3+1/3x4+1/4x5+...1/99x100
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Tính : 1/4x5 + 1/5x6 + ................. + 1/98x99 + 1/99x100
\(\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
=\(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{4}-\frac{1}{100}\)
=\(\frac{6}{25}\)
Tính:1/1x2 + 1/2x3 + 1/3x4 + ... + 1/98x99 + 1/99x100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Cho hai số biết rằng bớt số thứ nhất 28 đơn vị thì được số thứ hai va 1/3 số thứ nhất bằng 3/5 số thứ hai.Tìm hai số đó
Tính:
1/1x2 + 1/2x3 + ... + 1/99x100
1/1.2+1/2.3+....+1/99.100
=1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100=100/100-1/100=99/100
Tính A= 1/1x2+1/2x3+1/3x4+........+1/98x99+1/99x100