b) Tìm các số tự nhiên n sao cho 4n^4 + 1 là số nguyên tố.
Tìm các số tự nhiên m,n sao cho m^4+4n^4 là số nguyên tố.
tìm số nguyên tố P sao cho:
a) P+10 và P+ 20 đều là các số nguyên tố
b)Tìm số tự nhiên n sao cho : 4n+5 chia cho 2n+1
Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3
b) Có 4n+5 chia hết cho 2n+1
=>2(n+1)+3 chia hết cho 2n+1
=>2n+1 thuộc Ư(3)={1;3}
Với 2n+1=1 =>n=0
Với 2n+1=3 =>n=1
Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha
a, p là số nguyên tố
+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P
p + 20 = 3 + 20 = 23 thuộc P
=> p = 3 (nhận)
+ p là số nguyên tố và p > 3
=> p = 3k + 1 hoặc p = 3k + 2
xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số
=> p = 3k + 1 loaị
+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số
=> p = 3k + 2 loại
vậy p = 3
b, 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2(2n + 1) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
xét ư(3) là ok nhé
1. Tìm số nguyên tố p sao cho: x^2 + y^2 - 3xy = p-1
2. Tìm số tự nhiên m,n sao cho m^4 + 4n^4 là số nguyên tố.
(Mong các bạn cho mình xin được lời giải chi tiết)
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm các số tự nhiên n sao cho n, 2n + 1, 4n + 1 đều là các số nguyên tố , giải giùm mik nha thank you
xét n = 2 => 4n + 1 = 2.4 + 1 = 9 (không là số nguyên tố)
=> n = 2 (loại)
xét n = 3 => 2n + 1 = 2.3 + 1 = 7 (thỏa mãn)
4n + 1 = 3.4 + 1 = 13 (thỏa mãn)
=> n = 3 (chọn)
xét n là số nguyên tố, n > 3 => n = 3k + 1 hoặc n = 3k + 2
với n = 3k + 1 => 2n + 1 = 2(3k + 1) + 1 = 6k + 2 = 2(k + 1) (là hợp số)
=> n = 3k + 1 (loại)
với n = 3k + 2 => 4n + 1 = 4(3k + 2) + 2 = 12k + 10 = 2(6k + 5) (là hợp số)
=> n = 3k + 2 (loại)
vậy n = 3
Tìm các số tự nhiên x;n sao cho số \(p=x^4+2^{4n+2}\) là một số nguyên tố
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)
Mn ơi giúp mình với!
Bài 1: Tìm các số tự nhiên n sao cho 4n + 22 là số nguyên tố.
Bài 2: Tìm số nguyên tố p sao cho p + 10 và p + 20 là số nguyên tố.
Cảm ơn mn rất nhiều ạ!!!:3333
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố