Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Idol ichigo
Xem chi tiết
shitbo
6 tháng 2 2019 lúc 19:32

+) a=3=>(a-1)(a+1)+375=8+375=383 (cái này bạn tự bt là hợp số hay số nguyên tố)=>a^3+4=31 (t/m)

+) a khác 3=>a có dạng 3k+1 hoặc 3k+2

=> (a-1)(a+1)+375=a^2+374 mặt khác: Với a là snt >3 thì

a^2 có dạng 3k+1 (k E N)=>a^2+374=3k+375 chia hết cho 3 và >3 (hợp số)

Vậy: chỉ có 3 ms t/m 2 đk kiện a nt và (a+1)(a-1)+375 nt

trong TH này a^3+4 là snt Ta có đpcm 

Nguyễn Bá Thành
Xem chi tiết
Nguyễn Thị Anh Thư
18 tháng 3 2018 lúc 15:11

Cho đoạn thẳng AB,M là trung điểm của nó.Lấy điểm C thuộc đoạn thẳng AB(C không trùng với các diểm A,B và M) sao cho AC<CB

a,Trong ba điểm A,M,C điểm nào nằm giữa 3 điểm còn lại?

b,Trên tia đối tia BA lấy điểm N.Chứng tỏ rằng:MN=AN+BN/2

Đặng Tiến Dũng
Xem chi tiết
Lê Chí Cường
21 tháng 10 2015 lúc 20:27

1.

Vì p là số nguyên tố lớn hơn3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số

=>Vô lí

*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố

Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số

Vậy 8p-1 là hợp số

2.

Vì p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2(1)

Vì p là số nguyên tố lớn hơn 3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3

=>p+1 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

p+1 chia hết cho 2 và 3

mà (2,3)=1

=>p+1 chia hết cho 2.3

=>p+1 chia hết cho 6

Vậy p+1 là bội của 6

Xem chi tiết
👁💧👄💧👁
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

👁💧👄💧👁
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Anh Hoàng Dương Minh
Xem chi tiết
Lỗ Thị Thanh Lan
8 tháng 11 2014 lúc 20:12

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

trần văn trung
Xem chi tiết
Nghiêm Việt Anh
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Dat nguyen van
11 tháng 11 2014 lúc 21:57

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:15

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:23

b)Tương tự cách làm trên:

Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)

Vậy.....................................

Hoàng Phương
Xem chi tiết
doremon
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Trần Thị Loan
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ