CHO A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)
CHUNG MINH RANG A<2
cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)
Chung minh rang A<2
mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50
A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)
A<1-1/50
mà 1/50>0=>1-1/50<1<2
A<1-1/50<1<2
A<2
chúc học tốt
Cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\)
Chung minh rang A khong co gia tri la mot so tu nhien
Mk dag can gap
Đặt \(T=3\cdot5\cdot7\cdot.....\cdot49\)
\(\Rightarrow A\cdot T=\frac{T}{2}+\frac{T}{3}+\frac{T}{4}+....+\frac{T}{50}\)
\(2^4\cdot B\cdot T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+....+\frac{2^4T}{50}\left(1\right)\)
Tất cả các số hạng của (1) đều là stn ngoại trừ \(\frac{2^4T}{5}\)
\(\Rightarrow VP\notinℕ\Rightarrow VT\notinℕ\)
Mà \(2^4\inℕ\Rightarrow T\inℕ\)
\(\Rightarrow A\notinℕ\left(đpcm\right)\)
Cho a,b.c la cac so duong va abc = 1
Chung minh rang \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) va\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2.\)
Chung minh rang a+b+c=abc
Ta có:\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Rightarrow2+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\Rightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=2\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\Rightarrow\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
\(\Rightarrowđpcm\)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{2}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow2^2=2+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow2=.2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Leftrightarrow\frac{a}{abc}+\frac{a}{abc}+\frac{b}{abc}=\frac{abc}{abc}\)
\(\Leftrightarrow a+b+c=abc\)
\(\RightarrowĐPCM\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
=> \(\frac{a+b+c}{abc}=1\)
=> a+b+c=abc
cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+......+\frac{1}{50^2}\)Chưng minh rang a<2
A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)
=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)
=>A<1+\(\frac{49}{50}\)
=>A<\(\frac{99}{50}\) <2
=>A<2
K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM
A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)
A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)
A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
A<1+\(\left(1-\frac{1}{50}\right)\)
A<1+\(\frac{49}{50}\)
=>A<2
a). Cho A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+....+\(\frac{1}{2015^2}\).
Chung minh rang : A < 1.
b). Cho B=\(2^1\)+\(2^2\)+\(2^3\)+....+\(2^{2016}\).
Chung minh rang : B chia het cho 21.
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
cho a khac 0 b khac 0 va a+b=1 chung minh rang \(\frac{b}{a^3-1}-\frac{a}{b^3-1}=\frac{2\left(a-b\right)}{a^2b^2+3}\)
cho 1/a+1/b+1/c=2 va :a+b+c=abc .chung minh rang: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cho 1/a+1/b+1/c=2 va :a+b+c=abc
.chung minh rang:
.
chung to rang
a) A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
Ta có A = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^100
Suy ra 2A - A = ( 1 + 1/2 + 1/2^2 +...+ 1/2^99) - ( 1/2 + 1/2^2 +...+ 1/2^100 )
Suy ra A = 1 - 1/2^100 < 1
Vậy A < 1 ( ĐPCM)