Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 10:36

a: góc ACB=1/2*sđ cung AB=90 độ

=>BC vuông góc AM

góc ADB=1/2*sđ cung AB=90 độ

=>BD vuông góc AN tại D

ΔABM vuông tại B có BC là đường cao

nên AC*AM=AB^2

ΔABN vuông tại B có BD là đường cao

nên AD*AN=AB^2

=>AC*AM=AD*AN

=>AC/AN=AD/AM

=>ΔACD đồng dạng với ΔANM

=>góc ACD=góc ANM

=>góc DCM+góc DNM=180 độ

=>DCMN nội tiếp

b: AC*AM=AB^2=(2R)^2=4R^2

AD*AN=AB^2=(2R)^2=4R^2

Nguyễn Thị Yến Nhi
Xem chi tiết
Nguyễn Thị Yến Nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 11 2017 lúc 1:54

* Tam giác MON vuông tại O có đường cao OP nên

OP2 = MP. NP (1)

* Theo tính chất hai tiếp tuyến cắt nhau ta có

MA= MP và NB = NP (2)

Từ (1) và (2) suy ra: OP2 = MA. NB hay R2 = MA. NB ( đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2017 lúc 17:01

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).

Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.

Vậy ΔMON vuông tại O.

Góc Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn nên Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 = 900

Tứ giác AOPM có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Suy ra, tứ giác AOPM nội tiếp đường tròn.

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét ∆ MON và ∆ APB có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

=> Hai tam giác MON và APB đồng dạng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2018 lúc 1:53

* Theo a, ∆MON và APB đồng dạng với nhau với tỉ số đồng dạng là:

Mà: MN = MP+NP = MA+NB = R/2 +2R = 5R/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 11:58

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.

Nguyễn Đức Đại
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 22:33

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

Nguyễn Đức Đại
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:06

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)