cho a và b là số tự nhiên (a,b)=1 và a.b = c^2. Chứng tỏ a và b là số chính phương.
Chứng minh rằng nếu a, b, c là số tự nhiên mà (a,b) =1 và a.b =c2 thì a và b đều là số chính phương.
(Trình Bày Rõ Lời Giải Giùm Mk Nha Các Bạn!!!!)
Thanks Nhìu Nha!!
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a và b đều là số chính phương
Chứng minh rằng nếu a,b,c là số tự nhiên mak (a,b)=1 và a*b=c^2 thì a và b đều là số chính phương
1.Cho a, b là số tự nhiên khác 0, (a, b) = 1 biết a.b = c2
Chứng minh rằng:a, b là số chính phương
2. x+15.x2=16.y2+y
Chứng minh rằng:x-y, 15x+15y+1, 16y2+y là số chính phương
3.Cho a, b, c là số tự nhiên khác 0 biết \(\frac{1}{a}\)+ \(\frac{1}{b}\)= \(\frac{1}{c}\). Chứng minh rằng: a+b là số chính phương
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Cho các số nguyên dương a,b,c thoả mãn đẳng thức: a+b=b(a-c) và c+1 là bình phương của 1 số nguyên tố. Chứng minh ít nhất 1 trong 2 số: a+b và a.b là số chính phương.
Giải cho mik đi pls đó
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a và b đều là số chính phương.
Giúp mink nha
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a,b đều là số chính phương
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Chứng minh rằng: Nếu a.b = c^2 (a, b, c thuộc N) và ƯCLN(a, b) = 1 thì a và b đều là các số chính phương
Gọi UCLN(a,c) = d => a = a1 d, c = c1 d.
=> ab = c
<=> a1 db = (c1 d)2
<=> a1 b = c12 d (1)
Từ (1) => a1 b chia hết cho c12 mà vì (a1, c1) = 1 nên b chi hết cho c12 (2)
Từ (1) ta lại => c12 d chia hết cho b mà vì (a,b) = 1 nên (b,d) = 1
=> c12 chia hết cho b (3)
Từ (2) và (3) => b = c12
Từ đề bài ta có
ab = c2
<=> ac12 = (c1 d)2
<=> a = d2
Vậy a, b là hai số chính phương