Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le nhat
Xem chi tiết
Ngyuển Trung Sơn
2 tháng 3 2017 lúc 21:41

??????????????????????????????????????????????

le nhat
2 tháng 3 2017 lúc 22:15

Lần đầu post, mình quên mất chưa nêu câu hỏi. Nhờ các bạn chứng minh dùm 3 câu trên với, cám ơn nhiều ah!

Ngô Chi Lan
11 tháng 1 2021 lúc 16:42

1.\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{100}}\)

Thấy:\(\frac{1}{2^{100}}>0\Rightarrow1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow A< 1\)

Ta có:\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)=A+100< 1+100=101\)

\(101>\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(1+\frac{1}{2^{100}}\right)\ge100\)

\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)...\left(\frac{1}{2^{100}}\right)>\left(\frac{101}{100}\right)^{100}>3\)

*Cách khác:

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)\)

\(=\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)

Ta thấy:

\(\frac{2+1}{2}>\frac{2^2+1}{2^2}>....>\frac{2^{100}+1}{2^{100}}\)

\(\Rightarrow\frac{2+1}{2}>\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}\)

Mà \(\frac{2+1}{2}< 3\)

\(\Rightarrow\frac{2+1}{2}.\frac{2^2+1}{2^2}....\frac{2^{100}+1}{2^{100}}< 3\)

\(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)+...+\left(1+\frac{1}{2^{100}}\right)< 3\)

Khách vãng lai đã xóa
Trái tim băng giá
Xem chi tiết
Nguyễn Công Dương
6 tháng 5 2021 lúc 20:04

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

Khách vãng lai đã xóa
Nguyen Thi ngoc mai
Xem chi tiết
Bùi Vũ Kỳ Uyên
12 tháng 3 2016 lúc 19:29

Gì mà đáng sợ thế

Nguyen Thi ngoc mai
12 tháng 3 2016 lúc 20:14

Đáng sợ j zậy bạn?

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vuquangminh2611
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

ĐỊT CON MẸ MÀY
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Kai kai kai
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

Phúc Crazy
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

1+1=3 :)))

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vũ Phan Tuấn Dũng
Xem chi tiết
EXOplanet
Xem chi tiết
Mai Thị Phương Thảo
Xem chi tiết
Nguyễn Tiến Quân
23 tháng 4 2020 lúc 19:59

??????????????????????????????????????????

Khách vãng lai đã xóa
Oz Vessalius
Xem chi tiết
Akai Haruma
25 tháng 10 2018 lúc 23:46

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

Akai Haruma
25 tháng 10 2018 lúc 23:56

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

Akai Haruma
26 tháng 10 2018 lúc 0:01

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

Trừ theo vế:

\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)

\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)

Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)

\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)

Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)

\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)

Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)