Tìm n để n^4+n= snt
Tìm SNT n để n+2,n+4,n+6,n+14 là SNT
Cho P=n[4-n] tìm STN n để P là snt
Tìm n và k để n^4 + 4^(2k+1) là SNT
Tìm n thuộc N,để:
a)n^2+10n là SNT
b)3n+1 là SNT
c)n^3+n^2 là SNT
d)3^n+6 là SNT
e)n+(n+1)+(n+2) là SNT
''SNT'' là số nguyên tố nhé!
Tìm n thuộc N,để:
a)n^2+10n là SNT
b)3n+1 là SNT
c)n^3+n^2 là SNT
d)3^n+6 là SNT
e)n+(n+1)+(n+2) là SNT
''SNT'' là số nguyên tố nhé!
tìm tất cả các STN n để:
a,3(n+1) là SNT
b, n^3 +n^2 là SNT
c,3^n +6 là SNT
d,n+(n+1)+(n+2)+n+2) là SNT
Tìm tất cả SNT n để mỗi số sau đều là SNT :
n+1;n+3;n+7;n+9;n+13;n+15
Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)
Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)
Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)
Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)
Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)
Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)
Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4
Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)
Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)
Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)
Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)
Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.
Bài 1: Tìm K để
a, A= 29K là SNT
b, A= 29K là HS
c, A= 29K không phải là SNT cũng không phải là HS
Bài 2: Tìm n thuộc N để các số sau là SNT
a, A= (n-1) . (n^2+n+1)
b, B= (n+5) . (n-5)
Bài 3:
Tìm hai số nguyên tố có tổng = 39
Tìm stn n để (n + 1)(n + 3) là snt
ta có : \(\left(n+1\right)\left(n+3\right)\) ( n thuộc N )
\(\Rightarrow n+1\ge1\Rightarrow n\ge0\)
\(\Rightarrow n+3\ge3\Rightarrow n\ge0\)
vậy \(\left(n+1\right)\left(n+3\right)\) là số tự nhiên \(\Leftrightarrow\) \(n\ge0\)