So sánh: n và n+2013
n+1 n+2014
So sánh(2014^n - 2013^n)/(2014^n + 2013^n) và (2013^n - 2012^n)/(2013^n + 2012^n)
Ta có (2014^n-2013^)/(2014^n+2013^n) +1 = 2*2014^n/(2014^n+2013^n) chia cả tử và mẫu cho 2014 ta được A= 2/[1+(2013/2014)]
Tương tự (2013^n-2012^)/(2013^n+2012^n) +1 = 2*2013^n/(2013^n+2012^n) chia cả tử và mẫu cho 2013 ta được B= 2/[1+(2012/2013)]
Vì Ta có 2012/2013 < (2012+1)/(2013+1) = 2013/2014 nên A < B
so sánh phân số:
a) n+1/n+2 và n/n+3 (n nguyên dương)
b) 2013*2014-1/2013*2014 và 2014*2015-1/2014*2015
LÀM GẤP GIÚP MK NHA. SÁNG MAI MK PHẢI NỘP RÙI. CẢM ƠN NHA!!!
Cho n là một số nguyên dương. So sánh: \(\frac{2014^n-2013^n}{2014^n+2013^n}\) và \(\frac{2013^n-2012^n}{2013^n+2012^n}\)
Hãy so sánh M và N biết:
M = 1 2014 + 2 2013 + 3 2012 + ... + 2014 1
N = 1 + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + 3 + ... + 2014)
Cho hai biểu thức: M= 2013 x 2015 và N= 2014 x 2014. So sánh M và N
A. M > N
B. M < N
C. M = M
D. Không so sánh được
a, so sánh
M=2013/2014+2014/2015 va N=2013+2014/2014+2015
b, tìm số tự nhiên n sao cho n+3 chia hết cho n^2+1
so sánh\(\frac{n-2013}{n-2014}và\frac{n-2014}{n-2015}\)
Ta có :
\(\frac{n-2013}{n-2014}=1-\frac{2013}{2014}=\frac{1}{2014}\)
\(\frac{n-2014}{n-2015}=1-\frac{2014}{2015}=\frac{1}{2015}\)
Vì \(\frac{1}{2014}>\frac{1}{2015}\Rightarrow\frac{n-2013}{n-2014}<\frac{n-2014}{n-2015}\)
\(\frac{n-2013}{n-2014}<\frac{n-2014}{n-2015}\)
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
1. So sánh M và N ( Ko Quy Đồng)
biết M = \(\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}\)và
N =\(\frac{2012+2013+2014}{2013+2014+2015}\)
( Giải rõ ràn nha) tớ tick cho
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
so sánh M và N
M=\(\frac{2013}{123456789}+\frac{2014}{987654321}\)
N=\(\frac{2014}{123456789}+\frac{2013}{987654321}\)
Ta co: \(M=\frac{2013}{123456789}+\frac{2014}{987654321}=\frac{2013}{123456789}+\frac{2013}{987654321}+\frac{1}{987654321}\)
\(N=\frac{2013}{123456789}+\frac{1}{123456789}+\frac{2013}{987654321}\)
ma \(\frac{1}{987654321}< \frac{1}{123456789}\) nen \(M< N\)
\(M=\frac{2013}{123456789}+\frac{2014}{987654321}\)
\(N=\frac{2014}{123456789}+\frac{2013}{987654321}\)
\(M=\frac{2014}{987654321}-\frac{1}{987654321}\)
\(N=\frac{2014}{123456789}-\frac{1}{123456789}\)
Ta thấy \(\frac{1}{123456789}>\frac{1}{987654321}\)
\(\Rightarrow M< N\)