Cho tam giác ABC cân tại A, AM là đường phân giác. Vẽ MD // AC, ME // AB. Chứng minh tứ giác ADME là hình thoi
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
cho tam giác ABC cân tại A. gọi M là điểm bất kỳ thuộc cạnh đáy BC. Từ M kẻ ME // AB (E thuộc AC), và MD // AC ( D thuộc AB).
a) Chứng minh ADME là hình bình hành
b) Chứng minh tam giác MEC cân và MD + ME= AC
c) DE cắt AM tại N. Từ M vẽ MF//DE ( F thuộc AC), NF cắt ME tại G. Chứng minh G là trọng tâm của tam giác AMF
d) Xác định vị trí của M trên cạnh BC để ADME là hình thoi
Câu 6 Cho tam giác ABC vuông tại A, M là trung điểm của BC. Kẻ MD // AB, ME // AC (D AC, E AB).
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Cho AM = 10cm, AD = 6cm. Tính MD?
c) Tam giác ABC cần thêm điều kiện gì để tứ giác ADME là hình vuông?
Hình tự vẽ nhe fen :
a)
Tú giác ADME có:
MD // AB (gt)
ME // AC (gt)
góc A = 90 độ (gt)
=> tứ giác ADME là hình chữ nhật
b)
Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )
Tam giác ADM có:
Góc MDA = 90 độ
=> Tam giác ADM vuông góc tại D
Áp dụng định lí pitago vào tam giác ADM ta có:
\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)
c)
Giả sử Tam giác ABC vuông cân:
=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)
Xét Tam giác ABC có:
ME//AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME=1/2 AC (tc đường trung bình)
Ta lại có:
tam giác ABC có:
MD//AB (gt)
M là trung điểm của BC (gt)
=> MD là đường trung bình của tam giác ABC
=> MD=1/2AB
Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)
=> MD=ME=1/2AB=1/2AC (2)
Từ (1) và (2) => Tứ giác ADME là Hình vuông
=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A
Cho tam giác ABC vuông tại A, trung tuyến AM. Kẻ MD vuông góc với AB tại D; ME vuông góc với AC tại E.
a) Tứ giác ADME là hình gì? Vì sao?
b) Gọi I là điểm đối xứng với M qua D. Chứng minh tứ giác AMBI là hình thoi.
c) Tìm điều kiện của tam giác ABC để tứ giác AMBI là hình vuông.
d) Vẽ đường cao AH của tam giác ABC, kẻ HP vuông góc với AB tại P, HQ vuông góc với AC tại
Q. Chứng minh PQ vuông góc với AM.
Giúp mình câu d nhé!
Cho tam giác ABC vuông tại A (AB < AC). Điểm M là trung điểm của cạnh BC. Vẽ MD vuông góc với AB tại D, ME vuông góc với AC tại E. Trên tia đối của tia DM lấy điểm N sao cho DN = DM.
a) Chứng minh rằng: tứ giác ADME là hình chữ nhật.
b) Chứng minh rằng: tứ giác AMBN là hình thoi.
c) Vẽ CK vuông góc với BN tại K. Gọi I là giao điểm của AM và DE. Chứng minh rằng: tam giác IKN cân.
d) Gọi F là giao điểm của AM và CD. Chứng minh rằng: AN = 3MF
Bài 2: Cho tam giác ABC vuông tại A (AB < AC). Điểm M là trung điểm của cạnh BC. Vẽ MD vuông góc với AB tại D, ME vuông góc với AC tại E. Trên tia đối của tia DM lấy điểm N sao cho DN = DM.
a)Chứng minh rằng: tứ giác ADME là hình chữ nhật.
b)Chứng minh rằng: tứ giác AMBN là hình thoi.
c)Vẽ CK vuông góc với BN tại K. Gọi I là giao điểm của AM và DE. Chứng minh rằng: tam giác IKN cân.
d)Gọi F là giao điểm của AM và CD. Chứng minh rằng: AN = 3MF.
Cho tam giác ABC vuông tại A (AB < AC) có AM là đường trung tuyến. Vẽ MD vuông góc với AB tại D, vẽ ME vuông góc với AC tại E a) Chứng minh tứ giác ADME là hình chữ nhật b) Lấy điềm N đối xứng với điểm M qua đường thẳng AC. Chứng minh: AE = EC c) Chứng minh AMCN là hình thoi
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi
cho tam giác abc vuông tại a đương trung tuyến Am từ M kẻ ,MD vuông AB tại D ME vuông AC tạ E a/chứng minh tứ giác adme là hình chử nhật b/ lấy điẻm N điểm đói xứng với điiẻm M qua điểm D chứng minh tứ giác AMBM là hình thoi
Cho tam giác ABC vuông tại A, đường trung tuyến AM kể MD//AC cách AB tại D. ME//AB cắt AC tại E. a, chứng minh tứ giác ADME là hình chữ nhật b, chứng minh DE//BC c, biết AC = 8 cm,AB = 6 cm. Tính chu vi tứ giác DECB d, tam giác ABC cần điều kiện gì để tứ giác ADME là hình vuông
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và DE=1/2BC
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
=>DE=10/2=5cm
D là trung điểm của AB
nên \(BD=\dfrac{BA}{2}=\dfrac{6}{2}=3\left(cm\right)\)
E là trung điểm của AC
nên \(EC=EA=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Chu vi tứ giác EDBC là:
5+4+3+10=22(cm0
d: hình chữ nhật ADME trở thành hình vuông khi AD=AE
mà \(AD=\dfrac{AB}{2};AE=\dfrac{AC}{2}\)
nên AB=AC