Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tìm giá trị đó A = 3 n + 9 trên n - 4 B = 6n + 5 trên 2n - 1
Để A là số nguyên thì 3n+9⋮n-4
=>3n-12+21⋮n-4
=>21⋮n-4
=>n-4∈{1;-1;3;-3;7;-7;21;-21}
=>n∈{5;3;7;1;11;-3;25;-17}
Khi n=5 thì \(A=\frac{3\cdot5+9}{5-4}=\frac{15+9}{1}=24\)
Khi n=3 thì \(A=\frac{3\cdot3+9}{3-4}=\frac{9+9}{-1}=-18\)
Khi n=7 thì \(A=\frac{3\cdot7+9}{7-4}=\frac{21+9}{3}=\frac{30}{3}=10\)
Khi n=1 thì \(A=\frac{3\cdot1+9}{1-4}=\frac{12}{-3}=-4\)
Khi n=11 thì \(A=\frac{3\cdot11+9}{11-4}=\frac{33+9}{7}=\frac{42}{7}=6\)
Khi n=-3 thì \(A=\frac{3\cdot\left(-3\right)+9}{-3-4}=0\)
Khi n=25 thì \(A=\frac{3\cdot25+9}{25-4}=\frac{75+9}{21}=\frac{84}{21}=4\)
Khi n=-17 thì \(A=\frac{3\cdot\left(-17\right)+9}{-17-4}=\frac{-51+9}{-21}=\frac{-42}{-21}=2\)
Để B nguyên thì 6n+5⋮2n-1
=>6n-3+8⋮2n-1
=>8⋮2n-1
=>2n-1∈{1;-1}
=>2n∈{2;0}
=>n∈{1;0}
Khi n=1 thì \(B=\frac{6\cdot1+5}{2\cdot1-1}=\frac{11}{1}=11\)
Khi n=0 thì \(B=\frac{6\cdot0+5}{2\cdot0-1}=\frac{5}{-1}=-5\)
Để A là số nguyên thì 3n+9⋮n-4 =>3n-12+21⋮n-4 =>21⋮n-4 =>n-4∈{1;-1;3;-3;7;-7;21;-21} =>n∈{5;3;7;1;11;-3;25;-17} Khi n=5 thì A = 3 ⋅ 5 + 9 5 − 4 = 15 + 9 1 = 24 Khi n=3 thì A = 3 ⋅ 3 + 9 3 − 4 = 9 + 9 − 1 = − 18 Khi n=7 thì A = 3 ⋅ 7 + 9 7 − 4 = 21 + 9 3 = 30 3 = 10 Khi n=1 thì A = 3 ⋅ 1 + 9 1 − 4 = 12 − 3 = − 4 Khi n=11 thì A = 3 ⋅ 11 + 9 11 − 4 = 33 + 9 7 = 42 7 = 6 Khi n=-3 thì A = 3 ⋅ ( − 3 ) + 9 − 3 − 4 = 0 Khi n=25 thì A = 3 ⋅ 25 + 9 25 − 4 = 75 + 9 21 = 84 21 = 4 Khi n=-17 thì A = 3 ⋅ ( − 17 ) + 9 − 17 − 4 = − 51 + 9 − 21 = − 42 − 21 = 2 Để B nguyên thì 6n+5⋮2n-1 =>6n-3+8⋮2n-1 =>8⋮2n-1 =>2n-1∈{1;-1} =>2n∈{2;0} =>n∈{1;0} Khi n=1 thì B = 6 ⋅ 1 + 5 2 ⋅ 1 − 1 = 11 1 = 11 Khi n=0 thì B = 6 ⋅ 0 + 5 2 ⋅ 0 − 1 = 5 − 1 = − 5
Bài 1: Tìm n để các phân số sau có giá trị là 1 số nguyên
a) 5/n -2
b) n-5/n-4
c) n+2/n-9
d) n+9/3
Bài 2 :Viết tập A các số tự nhiên n biết
52/13<n<56/7
ta có n-2 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
| n-2 | -1 | -5 | 1 | 5 |
| n | 1 | -3 | 3 | 7 |
Vậy n={1;-3;3;7}
b, ta có n-5 chia hết cho n-4
\(\Rightarrow\)(n-4)-1 chia hết cho n-4
Suy ra 1 chia hết cho n-4 vì n-4 chia hết cho n-4
Suy ra n-4\(\in\)Ư(1)={-1;1}
ta có bảng giá trị
| n-4 | -1 | 1 |
| n | 3 | 5 |
Vậy n={3;5}
Bài 1 Cho A=1-7+13-19+25-31+....Biết A có 20 số hạng.Tính giá trị của biểu thức A
Bài 2 Cho biểu thức B=n+4 / n-3
a,Số nguyên n thỏa mãn điều gì để B là phân số?
b,Tìm tất cả các số nguyên dương n để B có giá trị là số nguyên
c,Tìm tất cả các số nguyên n để B có giá trị bé hơn 0
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115
Ta có biểu thức :
A=1-7+13-19+25-31+...+109-115
=(1-7)+(13-19)+(25-31)+...+(109-115) (có tất cả 10 cặp)
=(-6)+(-6)+(-6)+...+(-6)
=(-6).10=-60
Vậy giá trị của biểu thức A là -60.
Chúc bạn học tốt!
#Huyền#
1/ Cho phân số B =4/n-3. n thuộc Z
a) Số nguyên n phải có điều kiện gì để phân số B tồn tại?
b) Tìm phân số B biết n=0; n=10; n= -2
2/ Viết tập hợp A các số nguyên n sao cho phân số 32/n có giá trị bằng một số nguyên
3/ Tìm số n thuộc Z để phân số 2n+15/n+1 là số nguyên
4/ Tìm số nguyên x biết
a) x+3/15=-1/3
b) 1/2=x+3/8
5/ C ho a/b=-c/d. CMR
a) a/b=a+c/b+d
b) a+b/c+d=a/c
dấu / có nghĩa là phần
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
Tìm các giá trị nguyên của n để các phân số sau có giá trị là số nguyên :
a, A = 3 x n + 4 / n - 1
b, B = 6 x n - 3 / 3 x n + 1
Để \(\frac{3n+4}{n-1}\)là số nguyên thì:
\(3n+4⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\)
nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)
Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự
Tìm các số nguyên n để các phân số sau có giá trị là một số nguyên; số nguyên âm;
số tự nhiên
a) n+4/n
b) n-2/4
c) 6/n-1
a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n
Vì n chia hết cho n nên 4 chia hết cho n
-->n thuộc Ư(4)={1;2;4}
Vậy n thuộc {1;2;4}
c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1
-->n-1 thuộc Ư(6)={1;2;3;6}
+,n-1=1 \(\Rightarrow\)n=2
+,n-1=2 \(\Rightarrow\)n=3
+,n-1=3 \(\Rightarrow\)n=4
+,n-1=6 \(\Rightarrow\)n=7
Vậy n thuộc {2;3;4;7}
a) Với giá trị nào của n thì phân số sau có giá trị là số nguyên A= 3/n-5
b) Cho phân số n+9/n-6 ( n € Z , n > 6 ) . Tìm các gái trị của n để phân số có giá trị là số nguyên dương
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
| \(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
| \(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
| \(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
| \(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
Bài 1: Cho phân số \(A=\frac{6n-4}{2n+3}\); n là số nguyên
a) Tìm n để A nhận được giá trị là số nguyên
b) Tìm n để A rút gọn được.
c) Tìm n để A đạt GTLN và tính giá trị đó.
Bài 2: Cho phản số \(B=\frac{4n+1}{2n-3}\); n là số nguyên
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTNN? GTLN? Tính các giá trị đó
Bài 3: Cho phân số \(C=\frac{8n+193}{4n+3}\); n là số nguyên
a) Tìm n để C có giá trị là số nguyên tố
b) Tìm n để C là phân số tối giản
c) Với giá trị nào của n từ khoảng 150 đến 170 thì phân số C rút gọn được
d) Tìm n để C đạt GTNN? GTLN? Tính các giá trị đó
Tìm các số nguyên n để các phân số sau có giá trị là một số nguyên; số nguyên âm;
số tự nhiên
a) n+4/n b) n-2/4 c) 6/n-1