cho x,y,z dương thỏa mãn 2xyz + xy +yz+zx \(\le\)1
tìm giá trị nhỏ nhất của xyz
cho x,y,z>0 thỏa mãn 2xyz+yz+zx+xy<=1.Tìm giá trị lớn nhất của xyz
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)
Không mất tính tổng quát, giả sử đó là y và z
\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)
Mặt khác từ giả thiết:
\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)
\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)
\(\Leftrightarrow1-x\ge2yz\)
\(\Rightarrow yz\le\dfrac{1-x}{2}\)
Do đó:
\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)
\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)
\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
Cho các số dương x, y, z thay đổi thỏa mãn \(x+y+z=1\)
Tìm giá trị lớn nhất của biểu thức:
\(S=\frac{xy+yz+zx-xyz}{xy+yz+zx+xyz+2}\)
\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)
\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)
\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)
\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)
\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)
Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)
\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)
Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)
Cho x,y,z là các số dương thỏa mãn: 2xyz + xy + yz + zx \(\le\) 1. Tìm giá trị nhỏ nhất của x.y.z
Biểu thức xyz chỉ có max, ko có min
\(1\ge2xyz+xy+yz+zx\ge2xyz+3\sqrt[3]{\left(xyz\right)^2}\)
Đặt \(\sqrt[3]{xyz}=t>0\Rightarrow2t^3+3t^2-1\le0\)
\(\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)\le0\)
\(\Leftrightarrow2t-1\le0\Rightarrow t\le\frac{1}{2}\)
\(\Rightarrow\sqrt[3]{xyz}\le\frac{1}{2}\Rightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho 3 số thực dương x,y,z thỏa mãn xy+yz+zx=xyz. Tìm giá trị nhỏ nhất của biểu thức
\(H=\frac{x^2}{9z+zx^2}+\frac{y^2}{9x+xy^2}+\frac{z^2}{9y+yz^2}.\)
Pls giúp mk vs.Mình sẽ đánh giá tốt.
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức P=(xy/z)+(yz/x)+(zx/y)
Áp dụng BĐT Cô - si cho 2 số \(\frac{xy}{z};\frac{yz}{x}\)dương ta có: \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)
Tương tự. \(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}.\frac{zx}{y}}=2\sqrt{z^2}=2z\) (2);
\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}.\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)
Cộng từng vế của (1)(2)(3) ta được \(2.\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)=2\Rightarrow P\ge1\)
Vậy Min P = 1 tại x= y = z = 1/3