Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quỳnh Chi
Xem chi tiết
Hoa Nhan
Xem chi tiết

a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z

⇒⇒ 3z ≥≥ xyz

⇒⇒ 3 ≥≥ xy

Vì xy nguyên dương nên xy = 1 hoặc xy = 2

+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương

+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.

Vậy...

b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)

* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)

* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

chúc bạn hok tốt

Khách vãng lai đã xóa
Huỳnh Quang Sang
24 tháng 7 2020 lúc 15:31

a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)

Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)

=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)

+) Trường hợp 1 : 

z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20

Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))

x - 420105421
y - 412451020
x24149865
y56891424

Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)

Xét tiếp trường hợp z = 2,z = 3 nữa nhé

b) Tương tự




 

Khách vãng lai đã xóa
OH-YEAH^^
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 18:23

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

Nguyễn Tất Anh Quân
Xem chi tiết
Nguyễn Thị Ngọc Minh
22 tháng 4 2017 lúc 11:15

x = 100

y = 20

z = 3

Nguyễn Gia Triệu
14 tháng 2 2018 lúc 12:08

x=1

y=2

z=3

lehongphong
4 tháng 5 2018 lúc 21:32

x=50

y=65

z=55

Trịnh Xuân Minh
Xem chi tiết
Trần Minh ngoc
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Lê Thành An
Xem chi tiết
Nguyễn Linh Chi
15 tháng 12 2019 lúc 19:18

Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.

Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z

Và xy = 2 ( x + y + z ) : z 

=> xyz \(\le\)6z

=> xy \(\le\)6

vì x, y là số nguyên dương

=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y

+) TH1 : xy = 1 => x = y = 1

=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại

+) TH2: xy = 2 => x = 1; y = 2 

=> 2 z = 2 ( 1 + 2 + z )  => 0z = 6 loại

+) TH3: xy = 3 => x = 1; y = 3

=> 3z = 2 ( 1 + 3 + z ) => z = 8  ( thỏa mãn )

+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4

Với x =2; y = 2 => 4z =2 (  4+ z)  => z = 4 ( thỏa mãn )

Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)

Em làm tiếp nhé!

Khách vãng lai đã xóa