tìm tất cả các số tự nhiên a,b sao cho 2016^a-1=-|b-2015|+b-2015
tìm tất cả các số nhiên a,b sao cho 2016a-1=-|b-2015|+b-2015
Với b>2015 thì -|b-2015| = 2015-b
lúc đó 2016a-1=0 <=> 2016a=1 <=> a=0
Với b<2015 thì -|b-2015|=b-2015
lúc đó 2016a-1= 2b-4030
<=> 2016a=2b-4029
Vì 2b luôn là số chẵn với mọi b thuộc N nên 2b-4029 là số lẻ
=> 2016a là số lẻ=> a=0
Vậy a=0 với mọi b là số tự nhiên thì đẳng thức 2016a-1=-|b-2015|+b-2015 có nghĩa
Đặt: \(\hept{\begin{cases}T=2016^a-1\\L=-\left|b-2015\right|+b-2015\end{cases}}\Leftrightarrow T=L\)
Xét: \(L=-\left|b-2015\right|+b-2015\)
\(-L=\left|b-2015\right|-b+2015\)
\(-L=\left|b-2015\right|+2015-b\)
\(-L\ge b-2015+2015-b=0\)
\(L\le0\Leftrightarrow T=2016^a-1\le0\)
\(\Rightarrow2016^a\le1\)
Vì \(a;b\in N\) nên ta tìm được \(a=0\)
Khi \(a=0\)thay vào biểu thức L ta có: \(b\ge2015\)
Vậy: \(\hept{\begin{cases}a=0\\b\ge2015\end{cases}}\)
Đặt: {
T=2016a−1 |
L=−|b−2015|+b−2015 |
⇔T=L
Xét: L=−|b−2015|+b−2015
−L=|b−2015|−b+2015
−L=|b−2015|+2015−b
−L≥b−2015+2015−b=0
L≤0⇔T=2016a−1≤0
⇒2016a≤1
Vì a;b∈N nên ta tìm được a=0
Khi a=0thay vào biểu thức L ta có: b≥2015
Vậy: {
..
1.
a. Tìm tất cả các số tự nhiên a,b sao cho: 2^a+37=lb-45l+b-45
b. Cho a,b là 2 số dương thỏa mãn: a^2015+b^2015=a^2016+b^2016=a^2017+b^2017
Hãy tính giá trị của biểu thức P=20a+11b+2017
tìm tất cả các số tn a,b sao cho 2016a - 1 = -/b-2015/ + b - 2015
Tìm các số tự nhiên a, b sao cho: (2016a + 13b - 1)(2016^a + 2016a + b) = 2015
tìm các số tự nhiên a,b sao cho : ( 2016a+13b-1).(2016^a+2016a+b)=2015
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
1.Cho biểu thức:A=(a^2015+b^2015+c^2015)-(a^2011+b^2011+c^2011) với a,b,c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
2. Tìm tất cả các số tự nhiên n sao cho n²-14n-256 là một số chính phương.
giúp mình với các bạn nhé!
tìm các số tự nhiên a, b sao cho ( 2016a + 13b -1 )(2016a + 2016a + b) = 2015
Tìm các số tự nhiên a,b sao cho:(2016a+13b-1)(2016a+2016a+b)=2015
Tìm tất cả các số tự nhiên n,m sao cho 2^m +2015 = /n -2016 / + n-2016
TH1: \(n-2016\ge0\)\(\Rightarrow n\ge2016\Rightarrow\left|n-2016\right|=n-2016\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=2\left(n-2016\right)\)(1)
Vì VT chẵn nên VP chẵn. Mà 2015 lẻ nên \(2^m\)phải lẻ\(\Rightarrow m=0\)
Thay m=0 vào (1), ta được: \(1+2015=2\left(n-2016\right)\Rightarrow n-2016=1008\Rightarrow n=3024\)(TM)
TH2: \(n-2016< 0\Rightarrow n< 2016\Rightarrow\left|n-2016\right|=-\left(n-2016\right)\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=0\Rightarrow2^m=-2015\)(vô lý)
Vậy \(\left(m;n\right)=\left(0;3024\right)\)
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }