tinh B = \(\frac{2^{15}\cdot7-2^{16}}{5\cdot2^{15}}\)
b\(^{\frac{2^{10\cdot13+2^{10}\cdot65}}{2^8\cdot104}}\)
c) \(\frac{5\cdot4^{15}-99-4\cdot3^{20}\cdot89}{5\cdot29\cdot6^{19}\cdot7\cdot2^{29}\cdot27^6}\)
b\(^{\frac{2^{10\cdot13+2^{10}\cdot65}}{2^8\cdot104}}\)
c) \(\frac{5\cdot4^{15}-99-4\cdot3^{20}\cdot89}{5\cdot29\cdot6^{19}\cdot7\cdot2^{29}\cdot27^6}\)
A=\(\frac{15\cdot3^{11}+4.27^4}{9^7}\)
B=\(\frac{2^{19}\cdot2^{73}+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
C=\(\frac{5\cdot12^3\cdot4^{11}-16^8}{\left(3\cdot2^{17}\right)^2}\)
D=\(\frac{4^7\cdot2^8}{3\cdot2^{15}\cdot16^2-5\cdot2^2\cdot\left(2^{10}\right)^2}\)
tính bằng cách hợp lí
a) \(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
b) \(1\cdot2\cdot3\cdot4\cdot...\cdot8\cdot9-1\cdot2\cdot3\cdot4\cdot...\cdot7\cdot8-1\cdot2\cdot3\cdot...\cdot7\cdot8^2\)
c) \(\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}\)
giúp em với ạ
c) \(\frac{\left(3\cdot4\cdot2^{16}\right)}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{\left(3\cdot2^2\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot2^{22}-2^{36}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{11\cdot2^{35}-2^{26}}\)
\(=\frac{9\cdot2^4\cdot2^{32}2^{ }}{\left(11-2\right)\cdot2^{35}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{9\cdot2^{35}}\)
\(=\frac{9\cdot1\cdot2^{32}}{9\cdot2^{31}}=\frac{2^{32}}{2^{31}}=2\)
Tinh
A=\(\frac{15\cdot3^{11}+4\cdot27^1}{9^7}\)
B=\(\frac{5\cdot2^{13}+4^{11}-1}{\left(3\cdot2^{17}\right)^2}\)
C=\(\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
\(A=\frac{15.3^{11}+4.27^1}{9^7}\)
\(\Rightarrow A=\frac{3.5.3^{11}+4.3^{3^1}}{\left(3^2\right)^7}\)
\(\Rightarrow A=\frac{3^{12}.5+4.3^3}{3^{14}}\)
\(\Rightarrow A=\frac{3^3.\left(5.3^8+4.3^3\right)}{3^{14}}\)
\(\Rightarrow A=\frac{32805+4}{177147}\)
\(\Rightarrow A=\frac{32809}{177147}\)
tính nhanh và ko quy đồng
a] C = \(\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
b] B = \(\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+\frac{6}{7\cdot9}+.....+\frac{6}{97\cdot99}\)
a) \(C=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
\(=7\left(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\right)\)
\(=7\left(\frac{1}{2}-\frac{1}{28}\right)\)
\(=7.\frac{13}{28}=\frac{7.13}{28}=\frac{13}{4}\)
b) \(B=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=3.\frac{32}{99}=\frac{3.32}{99}=\frac{32}{33}\)
\(41\sqrt[9^1]{8\sqrt[2]{\frac{12}{2.85\frac{1\cdot2+3\cdot4+5\cdot6+7\cdot8+9\sqrt[4]{16}}{2\cdot\frac{12}{2}\sqrt{4^2}-7^2}}}4\cdot5\cdot6\cdot7\cdot8\cdot9}\)
Ô phép tính khủng. Cái này do bạn chế ra à !
Bài 1 : Tính
A = \(\frac{81^4.3^{10}.27^5:3^{12}}{3^{18}:9^3.243^2}\)
B = \(\frac{2.55^2-9.55^{21}}{25^{10}}:\frac{5.\left(3.7^{15}-19\cdot7^{14}\right)}{7^{16}+3.7^{15}}\)
\(A=\frac{81^4.3^{10}.27^5:3^{12}}{3^{18}:9^3.243^2}=\frac{3^{16}.3^{10}.3^{15}:3^{12}}{3^{18}:3^6.3^{10}}=\frac{3^{29}}{3^{22}}=3^7\)
\(B=\frac{2.55^2-9.55^{21}}{25^{10}}:\frac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\frac{2.55^2-9.55^2.55^{19}}{25^{10}}:\frac{5\left(21.7^{14}-19.7^{14}\right)}{7.7^{15}+3.7^{15}}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}:\frac{5.7^{14}.2}{7^{15}.10}=\frac{55^2\left(55^{19}.9-2\right)}{25^{10}}.\frac{7^{15}.10}{5.7^{14}.2}\)Chịu ==
\(A=\frac{2^2\cdot3\cdot2^{16}\cdot81}{3^2\cdot2^{15}\cdot4+4^9;27}\)