Nếu 14a + 25b chia hết cho 17 thì 5a - 2b chia hết cho 17 với mọi a,b thuộc Z
Cho a,b thuộc Z. Chứng minh rằng :1) (6a + 11b) chia hết 31 tương đương với (a + 7b) chia hết 31
2) (5a + 2b) chia hết 17 tương đương với (9a + 7b) chia hết cho 17
Các bn ơi giúp mình với mình cần gấp:
CM rằng: Với mọi a, b thuộc Z thì ta có 3a + 11b chia hết cho 17 và 5a + 7b chia hết cho 17
Giải
- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17
-Gọi A = 12a + 44b
B = 5a + 7b
- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)
+Xét tổng A + B = 12a + 44b + 5a + 7b
= 17a + 51b
= 17.(a + 3b) chia hết cho 17
Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.
Nếu 3a + 2b chia hết cho 17 ( với a,b thuộc N) thì 10a + b chia hết cho 17
Ta có :
2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b
= 17a
Vì 17a chia hết cho 17
=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17
Vì ( 3a + 2b ) chia hết cho 17
=> 2 . ( 10a + b ) chia hết cho 17
Mà ( 2 ; 17 ) = 1
=> ( 10a + b ) chia hết cho 17
Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17
Theo đề bài ra, ta có:
\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))
\(\Rightarrow\)\(10a+2b⋮17\)
\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)
Mà \(\left(2;7\right)=1\)
\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)
Chứng minh rằng với mọi a,b thuộc Z ta có 3a+11b chia hết cho 17 khi và chỉ khi 5a+7b chia hết cho 17
Chứng minh rằng với mọi a;b thuộc Z ta có 3a+11b chia hết cho 17 khi và chỉ khi 5a+7b chia hết cho 17
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
chứng minh rằng với mọi a,b,c thuộc Z nếu a-11.b +3.c chia hết cho 17 thì 2.a-5.b+6.c chia hết cho 17
chứng minh răng nếu a,b thuộc Z và 3a +2b chia hết cho 17 thì 10a+b chia hết cho 17. Điều ngược lại có đúng không ?
Vì sao ?
a. Ta có: chia hết cho 7 nên chia hết cho 7. |
a. Ta có: chia hết cho 7 nên chia hết cho 7.
không chia hết cho 7 nên không chia hết cho 7.
3. .
Ta sẽ đi chứng minh chia hết cho với mọi nguyên.
Thật vậy:
.
Do là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà nên tích chia hết cho .
Cũng do là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích chia hết cho .
Ta có đpcm.
Xét hiệu 10(3a +2b) - 3(10a +b) = 30a +20b - 30a -3b = 17b
- Nếu 3a +2b chia hết cho 17 => 10(3a +2b) chia hết cho 17 và 17b chia hết cho 17 do đó 3(10a +b) chia hết cho 17
Mà 3 và 17 nguyên tố cùng nhau. Suy ra 10a +b chia hết cho 17
- Lập luận tương tự để kết luận điều ngược lại đúng
choA=5x+2y;B=9x+7y
a) rút gọn 7A-2B
b) cm nếu x;y thuộc Z thỏa mãn (5x+2y) chia hết cho 17 thì (9x+7y) chia hết cho 17
ta có 9x+7y=34x-25x+17y-10y
=34x+17y+(-25x-10x)
=34x+17y-5(5x+2y)
VÌ *34 chia hết cho 17
*17 chia hết cho 17
*(5x+2y) chia hết cho 17
nên nếu x;y thuộc Z thỏa mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17
CMR nếu (a-11b+3c) chia hết cho 17 thì (2a-5b+6c) chia hết cho 17 ( với a,b,c thuộc Z)
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)