Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Nguyễn
Xem chi tiết
Công Chúa Nụ Cười
Xem chi tiết
Kiệt Nguyễn
11 tháng 2 2019 lúc 8:19

                          Giải

- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17

-Gọi A = 12a + 44b

       B = 5a + 7b

- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)

+Xét tổng A + B = 12a + 44b + 5a + 7b

                        = 17a + 51b

                        = 17.(a + 3b)  chia hết cho 17

Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.

Bành Cát Minh
Xem chi tiết

Ta có :

2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b

                                       = 17a

Vì 17a chia hết cho 17 

=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17

Vì ( 3a + 2b ) chia hết cho 17 

=> 2 . ( 10a + b ) chia hết cho 17

Mà ( 2 ; 17 ) = 1

=> ( 10a + b ) chia hết cho 17

Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17

Khách vãng lai đã xóa
Lê Minh Vũ
15 tháng 10 2021 lúc 9:45

Theo đề bài ra, ta có:

\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))

\(\Rightarrow\)\(10a+2b⋮17\)

\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)

Mà \(\left(2;7\right)=1\)

\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)

Khách vãng lai đã xóa
Chirikatoji
Xem chi tiết
Anh Nguyễn Việt
Xem chi tiết
Hà Chí Dương
27 tháng 3 2017 lúc 12:43

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!

Trần Lan Anh
Xem chi tiết
Đặng Khánh Linh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
13 tháng 4 2016 lúc 17:40

a. Ta có:  chia hết cho 7 nên  chia hết cho 7.
 không chia hết cho 7 nên  không chia hết cho 7.

3. .
Ta sẽ đi chứng minh  chia hết cho  với mọi  nguyên.
Thật vậy:

.
Do  là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà  nên tích  chia hết cho .

Cũng do  là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích  chia hết cho .
Ta có đpcm.

=x(x-1)(x+1)(x^2-4+5)=(x-2)(x-1)x(x+1)(x+2)+5(x-1)(x+1)x

Dương Đức Hiệp
13 tháng 4 2016 lúc 17:43

a. Ta có:  chia hết cho 7 nên  chia hết cho 7.
 không chia hết cho 7 nên  không chia hết cho 7.

3. .
Ta sẽ đi chứng minh  chia hết cho  với mọi  nguyên.
Thật vậy:

.
Do  là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà  nên tích  chia hết cho .

Cũng do  là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích  chia hết cho .
Ta có đpcm.

=x(x-1)(x+1)(x^2-4+5)=(x-2)(x-1)x(x+1)(x+2)+5(x-1)(x+1)x

Hồ Sỹ Tiến
13 tháng 4 2016 lúc 18:34

Xét hiệu 10(3a +2b) - 3(10a +b) = 30a +20b - 30a -3b = 17b

- Nếu 3a +2b chia hết cho 17 => 10(3a +2b) chia hết cho 17 và 17b chia hết cho 17 do đó 3(10a +b) chia hết cho 17

Mà 3 và 17 nguyên tố cùng nhau. Suy ra 10a +b chia hết cho 17

- Lập luận tương tự để kết luận điều ngược lại đúng

phan diep
Xem chi tiết
Minh Triều
5 tháng 6 2015 lúc 20:52

ta có 9x+7y=34x-25x+17y-10y

                 =34x+17y+(-25x-10x)

                =34x+17y-5(5x+2y)

VÌ *34 chia hết cho 17

    *17 chia hết cho 17

    *(5x+2y) chia hết cho 17

nên nếu x;y thuộc Z thỏa mãn (5x+2y) chia hết cho 17 thì (9x-7y) chia hết cho 17

Nguyễn Quốc Thái
Xem chi tiết
Akai Haruma
9 tháng 10 2023 lúc 15:39

Lời giải:
$a-11b+3c\vdots 17$

$\Rightarrow 2(a-11b+3c)\vdots 17$

$\Rightarrow 2a-22b+6c\vdots 17$

$\Rightarrow 2a-5b+6c-17b\vdots 17$

$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)