tìm số tự nhiên a lớn nhất để a+71 và 4a-31 đều là số chính phương
Tìm số tự nhiên a lớn nhất để a+71 và 4a-31 đều là số chính phương.
bn có thể tham khảo vào chtt đó chứ giải ra dài quá làm biếng hihi!!!
2436547
MÌNH THẤY CHỊ HOA LƯU LY LÀM THẾ NÀY:
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n -m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=> n=11; m=13
TH2: 2n-m=3 và 2n+m=105 <=> n=27; m=51
TH3: 2n-m=5 và 2n+m=67 <=> n=17; m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13; m=19
TH5: 2n-m=15 và 2n+m=21 <=>n=9; m=3
Ta có: a+71=n2
=> a lớn nhất khi n lớn nhất
=> n=27
=> a=272-71=658
Vậy max a=658
VÀ ANH HUỲNH THIỆN TÀI THÌ Ý KIẾN LÀ: còn trường hợp 1*315 thì sao? ra a max = 6170
Bạn mún hỉu sao thì tùy, mình mới lớp 7, hổng hỉu gì hết ^^!
Mình trình bày lại bài dưới thôi.
Đặt x2 =a+71 => ( 2x)2 =4a+ 284
y2 = 4a - 31
(2x)2 - y2 =(2x-y)(2x+y) = 315
a lớn nhất => tông 2x và y là lớn nhất ; Hieeuh 2x -y là nhỏ nhất
=> \(\int^{2x-y=1}_{2x+y=315}\Leftrightarrow\int^{x=79}_{y=157}\)
Vậy a=6170
Số tự nhiên a lớn nhất để a + 71 và 4a - 31 đều là số chính phương là số nào? (Số chính phương là số có thể viết dưới dạng bình phương của một số nguyên)
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
Số tự nhiên a lớn nhất để \(a+71\) và \(4a-31\) đều là số chính phương?
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
còn trường hợp 1*315 thì sao ? ra a max = 6170
tìm số tự nhiên n sao cho 2n+5 và n+31 đều là số chính phương
Lời giải:
Đặt $n+31=a^2$ với $a$ tự nhiên. Khi đó: $2n+5=2(a^2-31)+5=2a^2-57$
Như vậy, ta cần tìm $a$ sao cho $2a^2-57$ là số chính phương.
Ta có 1 tính chất quen thuộc: Số chính phương lẻ chia 8 dư $1$ (bạn có thể xét 1 scp $x^2$ và xét các TH $x=4k+...$ để cm)
$\Rightarrow 2a^2-57\equiv 1\pmod 8$
$\Rightarrow 2a^2\equiv 58\pmod 8$
$\Rightarrow a^2\equiv 29\equiv 5\pmod 8$
(điều này vô lý do scp chia 8 dư 0,1 hoặc 4)
Vậy không tồn tại số tự nhiên $a$, tức là không tồn tại số $n$ cần tìm.
1/ Tìm các cặp số tự nhiên xy thỏa mãn 35x+9=2.5y
2/ Số tự nhiên n sao cho n2+404 là số chính phương là ?
3/ Số tự nhiên a lớn nhất sao cho 80+a và 100-a đều là bội của a
Tìm tất cả các số tự nhiên a để a+15 và a-1 đều là số chính phương
Đặt: a+15=\(m^2\); a-1=\(n^2\)(m khác n). Nên a+15-(a-1)=\(m^2\)-\(n^2\)=\(m^2\)+mn-mn-\(n^2\)=m(m+n)-n(m+n)=(m-n)(m+n)
Suy ra: 16=(m+n)(m-n) Mà:16=1.16=2.8=(-1)(-16)=(-2)(-8) ((m+n)(m-n) không thể bằng 4.4 vì m khác n)
Từ đó ta có bảng sau:
m+n | ví dụ:8 |
m-n | 2 |
a | 10(nhận) |
người đọc tự giải tiếp.
Từ đó ta có đáp số.........
Tìm tất cả các số tự nhiên a để a + 15 và a - 1 đều là số chính phương.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Tìm số tự nhiên a để phân số \(\frac{5a-11}{4a-13}\)có giá trị lớn nhất và giá trị lớn nhất đó là bao nhiêu ?