chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1
chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1
a) Chứng minh rằng \(2^{1995}-1\)chia hết cho 31
b) Chứng minh rằng, với n thuộc N* ta có \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)chia hết cho 6
Chứng minh rằng với mọi số nguyên dương n , ta luôn có:
1/n+1 + 1/n+2 +...+ 1/2*n < 3/4
chứng minh rằng với mọi n thuộc N* ta luôn có:
\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{2n}<\frac{3}{4}\)
Chứng minh rằng :
a/ với mọi n thuộc N ta có : ( n + 3 ).( n + 13 ).( n + 14 ) chia hết cho 6
b/ với mọi n thuộc N* ta có : A = 34n + 1 + 24n + 1 chia hết cho 5
c/ với mọi n thuộc N* ta có : 56n + 777...777 chia hết cho 63 ( 777...777 có n chữ số 7 )
chứng minh rằng với mọi n thuộc N* ta có: 13 + 23 + ... + n3 = [n(n+1)]2 \4
ta có với n=1: VT=1=VP
giả sử đúng với n=k, k thuộc N*
ta cần chứng minh đúng với n=k+1
thay vào ta dduocj: [k(k+1)]2/4+(k+1)3=[(k+1)(k+2)]^2/4
=> đpcm
phương pháp quy nạp
chứng minh rằng với n thuộc N* thì :1*1!+2*2!+3*3!+...+n*n!=(n+1)! - 1
Chứng minh rằng với mọi n thuộc N,ta có:
a) (2^4n+1 +3) chia hết cho 5
b) (5^n -1) chia hết cho 4
chứng minh rằng với mọi n thuộc N ta luôn có: 1/1.6+1/6.11+1/11.16+...+1/(5.n+1).(5.n+6)=n+1/5.n+6