1+2+3+4+........+16+17+18
(1/18+2/17+3/16+4/15+5/14+4/13+ ...+18/1+18)/1/18
Bài 13: Dấu <, =, >
10 … 10 + 3
11 + 2…. 2 + 11
9 … 10 + 9
10 … 10 + 0
17 – 4 … 14 - 3
18 – 4 … 12
15 … 15 – 1
17 + 1… 17 + 2
12+ 5 … 16
16 … 19 - 3
15 – 4 … 10 + 1
19 – 3 … 11
10 < 10 + 3
11 + 2=2 + 11
9 < 10 + 9
10 = 10 + 0
17 – 4 > 14 - 3
18 – 4 >12
15 > 15 – 1
17 + 1<17 + 2
12+ 5 > 16
16 =19 - 3
15 – 4 =10 + 1
19 – 3 >11
tính : a) 2/3 *( 2/18+6/12-3/33 ) b) 6/14+4/25-5/10*3/16 c)5/25*(9/18+16/32-12/46) + 9/17 d)11/32:(14/18-16/27) + (2/3-5/15) e) ( 1/9+2/17)+3/6-(12/17-1/2) +5/9
bài 1:
1/4 + 2/3 2/7 + 2/3 2/5 + 1/3 2/3 + 1/2 1/3 + 3/5 4/5 + 1/3
1/8 + 3/4 1/36 + 5/12 1/3 + 1/6 + 1/18.
bài 2:
15/16 - 3/16 17/18 - 5/6 3/4 - 4/9 1/2 - 2/5 5/6 - 3/10 3-1/3
4/5 - 1/10 5/2 - 1 5/8 - 2/5.
1+2+3+4+5...+15+16+17+18+19+20
1+2+3+4+5+...+15+16+17+18+19+20
= ( 1 + 19 ) + ( 2 + 18 ) + ( 3 + 17 ) + ( 4 + 16 ) + ( 5 + 15 ) + ... + ( 9 + 11 ) + ( 10 + 20 )
= 20 + 20 + 20 + 20 + ... + 20 + 30
= 180 + 30 = 210
Tính số phần tử: \(\text{1+2+3+4+...+18+19+20}\)
\(=\left(20-1\right):1+1\) \(=20\)
Tổng : \(\dfrac{\left(20+1\right)\times20}{2}=210\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
1 + 2 + 3 + 4 + 5+ 19 +18 + 17 + 16 + 15
1 + 2 + 3 +4 + 5 + 19 +18 +17 +16 +15
=[1+19]+[18+2]+[17+3]+[116+4]+[15+5]
=20+20+20+20+20
=100
(19+1)+(18+2)+(17+3)+(16+4)+(15+5)=??????
(19 + 1) + (18 + 2) + (17 + 3) + (16 + 4) + (15 + 5)
= 20 + 20 + 20 + 20 + 20
= 20 x 5 = 100
20-19+18-17+16-15+ ...+4-3+2-1=...
20-19+18-17+16-15+14-13+12-11+11-10+10-9+9-8+8-7+7-6+6-5+5-4+4-3+3-2+2-1
=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
=1x15
=15
tk nhé
20 - 19 + 18 - 17 + 16 - 15 + ... + 4 - 3 + 2 - 1
= ( 20 - 19 ) + ( 18 - 17 ) + ( 16 - 15 ) + ... + ( 4 - 3 ) + ( 2 - 1 )
=> Có 10 cặp số 1
<=> 1 x 10
= 10
Đáp số: Kết quả là 10