\(y=\frac{1}{x^2+\sqrt{x}}\Delta\theta\lambda\vec{\cos^2\int^{ }_{ }\frac{\sqrt[]{}\sqrt{ }}{ }}\)
\(y=\frac{1}{x^2+\sqrt{x}}\int^{ }_{ }^{ }^2_{ }_{ }\vec{\vec{\vec{^2\frac{\frac{\frac{\sqrt[]{}\sqrt[]{}\sqrt[]{}\sqrt[]{}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{ }{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}{ }}}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\frac{\sqrt[]{}\int^{ }_{ }}{ }\)\(y=\frac{1}{x^2+\sqrt{x}}^2_{ }\theta\sqrt{\frac{ }{ }}\)
\(y=\frac{1}{x^2+\sqrt{x}}\vec{\frac{^{ }\frac{\sqrt[]{}^2^{ }^{ }\frac{\frac{\vec{\vec{\vec{\vec{\vec{^2^2\sqrt[]{}\frac{\frac{\left(\sqrt[]{}\right)}{ }}{ }}}}}}}{ }}{ }}{ }}{ }}\)
viết lại hẳn hoi đi chứ ,cứ viết kiểu z có ma trả lời
cẩu thả
1) \(\int\frac{xdx}{1+\sqrt{x-1}}\)
2) \(\int\frac{sin2xdx}{\cos^3x-\sin^2x-1}\)
3) \(\int\frac{dx}{1+\sqrt{x}+\sqrt{1+x}}\)
4) \(\int\frac{dx}{3x^3+x^2-4x}\)
5) \(\int\frac{dx}{\sqrt{9-x^2}}\)
1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)
\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)
Thay x vào ta có...
2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)
\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)
Ta có:
\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)
\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)
Thay x vào, ta có....
3)
\(\frac{1}{\left(1+\sqrt{x}\right)+\sqrt{x+1}}=\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{\left[\left(1+\sqrt{x}\right)-\sqrt{x+1}\right]\cdot\left[\left(1+\sqrt{x}\right)+\sqrt{x+1}\right]}\\ =\frac{\left(1+\sqrt{x}\right)-\sqrt{x+1}}{2\sqrt{x}}=\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\)
\(I_3=\int\left(\frac{1}{2\sqrt{x}}+\frac{1}{2}+\frac{\sqrt{x+1}}{2\sqrt{x}}\right)dx=\sqrt{x}+\frac{x}{2}+\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Xét \(\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}\)
Đặt \(x=tan^2t\Leftrightarrow dx=\frac{2tant}{cos^2t}\cdot dt\)
\(\Rightarrow\int\sqrt{\frac{x+1}{x}}\cdot\frac{dx}{2}=\int\sqrt{\frac{tan^2t+1}{tan^2t}}\cdot\frac{tant}{cos^2t}dt\\ =\int\frac{1}{sin^2t}\cdot\frac{sint}{cos^3t}dt=\int\frac{d\left(cost\right)}{cos^3t\left(1-cos^2t\right)}=...\)
\(y=\frac{1}{x^2+\sqrt{x}}\frac{\left(\int^4_2^5^2_5_8\vec{\log_1\Rightarrow\beta}\right)}{100462}\)
Mọi người ơi , giúp e tính tích phân bất định với ạ ! Cảm ơn m.n ạ !
a.\(\int\frac{x+6}{\sqrt{x^2-2x+10}}dx\)
b.\(\int\frac{x}{\sqrt{3-2x-x^2}}dx\)
c.\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
d,\(\int\frac{dx}{1+tanx}\)
e.\(\int tan^3xdx\)
f. \(\int cos^3xdx\)
g. \(\int sin^2x.cos^3xdx\)
h. \(\int sinx.cos2xdx\)
i. \(\int\frac{sin2x}{1+cos^2x}dx\)
a.
\(I=\int\frac{\frac{1}{2}\left(2x-2\right)+7}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx+7\int\frac{1}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}I_1+7I_2\)
Xét \(I_1=\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx=\int\frac{d\left(x^2-2x+10\right)}{\sqrt{x^2-2x+10}}=2\sqrt{x^2-2x+10}+C_1\)
Xét \(I_2=\int\frac{dx}{\sqrt{x^2-2x+10}}=\int\frac{dx}{\sqrt{\left(x-1\right)^2+9}}\)
Đặt
\(u=x-1+\sqrt{\left(x-1\right)^2+10}\Rightarrow du=\left(1+\frac{\left(x-1\right)}{\sqrt{\left(x-1\right)^2+10}}\right)dx=\frac{x-1+\sqrt{\left(x-1\right)^2+10}}{\sqrt{\left(x-1\right)^2+10}}dx\)
\(\Rightarrow du=\frac{u}{\sqrt{\left(x-1\right)^2+10}}dx\Rightarrow\frac{dx}{\sqrt{\left(x-1\right)^2+10}}=\frac{du}{u}\)
\(\Rightarrow I_2=\int\frac{du}{u}=ln\left|u\right|+C_2=ln\left|x-1+\sqrt{x^2-2x+10}\right|+C_2\)
\(\Rightarrow I=\sqrt{x^2-2x+10}+7ln\left|x-1+\sqrt{x^2-2x+10}\right|+C\)
2.
\(I=\int\frac{\frac{1}{2}\left(2x+2\right)-1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx-\int\frac{1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}I_1-I_2\)
Xét \(I_1=\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx=-\int\frac{d\left(3-2x-x^2\right)}{\sqrt{3-2x-x^2}}=-2\sqrt{3-2x-x^2}+C_1\)
Xét \(I_2=\int\frac{1}{\sqrt{3-2x-x^2}}dx=\int\frac{1}{\sqrt{4-\left(x+1\right)^2}}dx\)
Đặt \(x+1=2sinu\Rightarrow dx=2cosu.du\)
\(\Rightarrow I_2=\int\frac{2cosu.du}{2.cosu}=\int du=u+C_2=arcsin\left(\frac{x+1}{2}\right)+C_2\)
\(\Rightarrow I=-\sqrt{3-2x-x^2}-arcsin\left(\frac{x+1}{2}\right)+C\)
c/
\(I=\int\frac{1-\sqrt{x}}{\sqrt{1-x}}dx\)
Đặt \(\sqrt{x}=sint\Rightarrow x=sin^2t\Rightarrow dx=2sint.cost.dt\)
\(\Rightarrow I=\int\frac{2sint.cost\left(1-sint\right)}{\sqrt{1-sin^2t}}dt=\int\frac{2sint.cost\left(1-sint\right)}{cost}dt=\int\left(2sint-2sin^2t\right)dt\)
\(=\int\left(2sint+cos2t-1\right)dt=-2cost+\frac{1}{2}sin2t-t+C\)
\(=-2\sqrt{1-sin^2t}+\frac{1}{2}sint\sqrt{1-sin^2t}-t+C\)
\(=-2\sqrt{1-x}+\frac{1}{2}\sqrt{x\left(1-x\right)}-arcsin\left(\sqrt{x}\right)+C\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)
\(y=\frac{1}{x^2+\sqrt{x}}\int^{ }_{ }^2^{ }^2_{ }\frac{\sqrt[]{}\sqrt{ }}{ }\)
1) \(\int\left(\frac{lnx}{2+lnx}\right)^2\)
2) \(\int\frac{dx}{\left(x+3\right)^3\left(x+5\right)^5}\)
3) \(\int\frac{xdx}{\sqrt{1+\sqrt[3]{x^2}}}\)
4) \(\int\frac{dx}{x^3.\sqrt[3]{2-x^3}}\)
5)\(\int\sqrt[3]{\frac{2-x}{2+x}}.\frac{1}{\left(2-x\right)^2}dx\)
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)
\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)
\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)
5) Đặt \(\frac{2+x}{2-x}=4t^3\Leftrightarrow4t^3=\frac{4}{2-x}-1\)
\(d\left(4t^3\right)=d\left(\frac{4}{2-x}-1\right)\Leftrightarrow3t^2dt=\frac{1}{\left(2-x\right)^2}dx\)
\(I_5=\int\frac{3t^2}{t\sqrt[3]{4}}dt=\frac{3}{\sqrt[3]{4}}\int tdt=...\)