tìm x,y,z biết 2x=3y=4z và x+y-2z=-8
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
tìm x,y,z biết
6) x=3y=2z và 2x-3y+4z=48
7) 2x=3y=-2z và 2x-3y+4z=48
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
6) *2x - 3y + 4z = 48
<=> 4z -2z +4z = 48
=> ( 4-2+4)z = 48
=> z=8 => 2z= 16
* 2x -3y + 4z =48
<=> 6y - 3y +6y =48
=> (6 - 3+ 6)y = 48
=> y= \(\frac{16}{3}\) => 3y = 16
* 2x - 3y + 4z =48
<=> 2x -x + 2x = 48
=> ( 2 -1 +2)x =48
=>x= 16
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm x,y,z biết
1 .9x=12y=8z và x+y+z=46
2. 6x=4y=-2z và x-y-z=27
3. x=3y=2z và 2x-3y+4z
Tìm x,y,z biết
1 .9x=12y=8z và x+y+z=46
2. 6x=4y=-2z và x-y-z=27
3. x=3y=2z và 2x-3y+4z = 48
Bài 3 :
\(x=3y=2z\)
\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)
\(\Rightarrow x=\frac{k}{3}\)
\(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)
\(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)
tìm x,y,z biết: 2x-4y/3=4z-3x/2=3y-2z/4 và 2x-y+z=27
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}.\)VÀ \(2x-y+z=27\)
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}=\frac{6x-12y}{9}\)\(=\frac{8z-6x}{4}=\frac{12y-8z}{16}\)
\(=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}\)\(=\frac{0}{29}=0\)
\(\Rightarrow2x=4y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\Rightarrow4z=3x\Rightarrow\frac{z}{3}=\frac{x}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}\)\(=\frac{27}{9}=3\)
\(\frac{x}{4}=3\Rightarrow x=12\)
\(\frac{y}{2}=3\Rightarrow y=6\)
\(\frac{z}{3}=3\Rightarrow z=9\)
VẬY X = 12, Y = 6, Z = 9
Tìm x, y, z biết
a) 2x=3y-2x và x+y= 12
b) 7x-2y=5x-3y và 2x=3y=20
c) 2x=3y=4z-2y và x+y+z=35
d)3x=4y-2x=7z-4y và x+y-2z=10
a/ Tìm a,b,c biết 7x=3y và x-y=16
b/ Tìm x,y,z biết 2a=4b và 3b=5c và a+2b-3c= 99
c/ Tìm x,y,z biết 2x=3y=-2z và 2x-3y+4z=48
Tìm x,y,z biết:
a) x/4 = y/3 = z/9 và x - 3y + 4z = 62
b) x/y = 9/7, y/z = 7/3 và x - y + z = -15
c) x/y = 7/20, y/z = 5/8 và 2x + 5y - 2z = 100