Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phantuananh
Xem chi tiết
Thiên An Nguyễn
Xem chi tiết
coldly queen
24 tháng 3 2019 lúc 13:06

​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
bin
24 tháng 3 2019 lúc 13:11

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

bin
24 tháng 3 2019 lúc 13:22

Bài 3: 

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)

Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)

Vậy: (x + y + z)2 = x2 + y2 + z2

Nguyen Tuan Dung
Xem chi tiết
Yoona SNSD
Xem chi tiết
•ɦà↭ƙĭềυ↭σαηɦ•
Xem chi tiết
Bui Huyen
18 tháng 2 2019 lúc 15:34

a)ta có xy=7*9=7*3*3

vậy x =9;21 , y=7;3

b) xy=-2*5

mà x<0<y

nên x=-2 ,y=5

c)x-y=5 hay x=y+5

\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)

Bui Huyen
18 tháng 2 2019 lúc 15:36

câu c mk nhầm đề sr bạn nha

\(\frac{y+5-4}{y-5}=\frac{4}{3}\Rightarrow3y+3=4y-5\Rightarrow y=8\Rightarrow x=13\)

Đấu_chấm_hỏi
Xem chi tiết
Nguyễn Linh Chi
20 tháng 6 2020 lúc 15:30

Ta có: \(x+\frac{1}{y};y+\frac{1}{x}\) thuộc Z 

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+x.\frac{1}{x}+\frac{1}{y}.y+\frac{1}{xy}=xy+\frac{1}{xy}=xy+\frac{1}{xy}\) thuộc Z 

=> \(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+2xy\frac{1}{xy}+\frac{1}{x^2y^2}=x^2y^2+\frac{1}{x^2y^2}+2\) thuộc Z 

=> \(x^2y^2+\frac{1}{x^2y^2}\) thuộc Z

Khách vãng lai đã xóa
Đào Thị Bạch Cúc
Xem chi tiết
Lã Nguyễn Gia Hy
4 tháng 9 2017 lúc 23:28

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

Đào Thị Bạch Cúc
5 tháng 9 2017 lúc 16:47

thank Gia Hy

Đức Anh Gamer
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 8 2020 lúc 17:38

:(

\(A=\frac{3+x^2}{y+z}+\frac{3+y^2}{z+x}+\frac{3+z^2}{x+y}\)

\(=3\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)+\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)\)

\(\ge3\cdot\frac{9}{2\left(x+y+z\right)}+\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(=\frac{27}{2\cdot3}+\frac{3}{2}=6\)

Đẳng thức xảy ra tại x=y=z=1

Khách vãng lai đã xóa
Phan Hằng Giang
Xem chi tiết
Trần Phúc Khang
26 tháng 5 2019 lúc 6:50

Áp dụng bđt cosi ta có

\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)

................................................................,,,,

=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)

Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)

                                                                  \(\ge3\left(xy^2+yz^2+zx^2\right)\)

=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)

Lại có \(xy+yz+xz\le x^2+y^2+z^2\)

Khi đó

\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)

Vậy MinA=4/5 khi x=y=z=2/3

Dương Gia Huệ
Xem chi tiết