Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Trang
Xem chi tiết
Lê Duy Quang
Xem chi tiết
doan anh tuan
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
Nguyễn Thị Hương
29 tháng 11 2015 lúc 19:40

Giả sử aabb=n^2

<=> a x10^3+ax10^2+bx10 +b=n^2

<=> 11 (100a+b)=n^2

=> n^2 chia hết cho 11

=> n chia hết cho 11

Do n^2 có 4 chữ số nên 

32<n<100

=> n=33, n=44, n=55,...n=99

Thủ vào thì n=88 là thõa mãn 

Vậy số đó là 7744

roenroen
Xem chi tiết
Isaac Newton
9 tháng 2 2017 lúc 17:34

bạn ơi đề kiểu j vậy

Phan Tran Hong Anh
Xem chi tiết
o0o Sanada Ririna o0o
Xem chi tiết
Băng băng
1 tháng 11 2017 lúc 12:18

Giả sử aabb=n2 
<=> a . 10+ a . 102 + b . 10 + b = n2 
<=>11 ( 100a + b ) = n2 
=>n2 chia hết cho 11 
=> n chia hết cho 11 
Do n2 có 4 chữ số nên 
32 < n < 100 
=> n = 33 , n = 44 , n = 55 ,... n = 99 
Thử vào thì n = 88 là thỏa mãn 
Vậy số đó là 7744

  
Lê Bảo Sơn
16 tháng 3 2020 lúc 20:57

7744

Chuc ban hoc tot nha!

Khách vãng lai đã xóa
Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
18 tháng 11 2016 lúc 19:19

Gọi số chính phương đó là aabb

Ta có : \(aabb=n^2\)

\(aabb=1000a+100a+10b+b\)

\(=11\left(100a+b\right)=n^2\)

\(=11\left(99a+a+b\right)=n^2\left(1\right)\)

Do aabb chia hết cho 11 nên a + b chia hết cho 11

=> a + b = 11 \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :

\(n^2=11^2\left(9a+1\right)\)

=>\(9a+1\) là số chính phương

Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn

=> a = 7 => b = 4

Vậy số cần tìm là 7744

Thanh Huong
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 2 2019 lúc 10:55

Gọi số chính phương phải tìm là \(A=m^2=\overline{aabb}\) và \(a,b\)là các chữ số,\(a\ne0\)

Ta có:\(A=\overline{aabb}=\overline{aa00}+\overline{bb}=11a\cdot100+11b=11\left[99a+\left(a+b\right)\right]\left(1\right)\)

Để A là số chính phương thì \(99a+\left(a+b\right)⋮11\)

\(\Rightarrow a+b⋮11\)vì \(99a⋮11\)

Mà \(1\le a+b\le18\)

\(\Rightarrow a+b=11\)

Thay vào \(\left(1\right)\) ta được:\(m^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)

\(\Rightarrow9a+1\)là số chính phương

Thử a lần lượt từ 1 đến 9 theo điều kiện trên ta được a=7 thỏa mãn khi đó b=4.

\(\Rightarrow\)Số chính phương cần tìm là \(7744\)