Cho: A= 1/2 + 1/3 + 1/4+ ... +1/2008
B= 2007/1 + 2006/2 + 2005/3 +... +2/2006 + 1/2007
Tính B/A
1 Tính
A (1-1/2) * (1-1/3 ) * (1-1/4 ) * .....*(1-1/19)* ( 1-1/20)
B 3/2 * 4/3 * 6/5* ......* 2006/2005 * 2007/2006 * 2008/2007
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot......\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot......\cdot\frac{19}{20}\)
\(A=\frac{1.2.3.....19}{2.3........20}\)
\(A=\frac{1}{20}\)
2008+2007/2+2006/3+2005/4+2005/5+........................3/2006+2/2007+1/2008
1/2+1/3+1/4+1/5+....................+1/2009
2008-1/2008=2007/2008
1/2-1/2009=2007/2009
2008+2007/2+2006/3+2005/4+2005/5+........................3/2006+2/2007+1/2008
1/2+1/3+1/4+1/5+....................+1/2009
Giải phương trình (1/1*2*3+1/2*3*4+1/3*4*5+...+1/2005*2006*2007)x=1*2+2*3+...+2006*2007
1)A=2005^2005+1 trên 2005^2006+1 và B=2005^2004+1 trên 2005^2005 2)A=2006^2006+1 trên2007^2007+1 vàB=2006^2005+1 trên 2006^2006+1
Tinh A = \(\frac{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+........\frac{2006}{2006}+\frac{2006}{2007}}{\frac{1}{2006}+\frac{2}{2005}+\frac{3}{2004}+.........+\frac{2005}{2}+\frac{2006}{1}}\)
tính M :N biết: N=1/2+1/3+1/4+......+1/2007+1/2008 và M= 2007/1+2006/2+2005/3+......+2/2006+1/2007
\(\frac{M}{N}=\frac{\frac{1}{2007}+\frac{2}{2006}+......+\frac{2006}{2}+\frac{2007}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2006}+\frac{1}{2007}}\)
\(\frac{M}{N}=\frac{\frac{1}{2007}+1+\frac{2}{2006}+1+.......+\frac{2007}{1}+1+\frac{2008}{2008}-2008}{\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+.....+\frac{1}{2}}\)
\(\frac{M}{N}=\frac{\frac{2008}{2007}+\frac{2008}{2006}+....+\frac{2008}{1}+\frac{2008}{2008}-2008}{\frac{1}{2008}+........+\frac{1}{2}}\)
đến đây là ra rùi ha
ê tớ chẳng hiểu gì cả
cậu làm tắt à
please cậu giúp tớ cả bài đi mà
Tính A/ B biết
A= 2008+ 2007/2 + 2006/3 + 2005/4+....+ 2/2007+ 1/2008 ; B = 1/2+1/3+1/4+1/5+....1/2008+1/2009
A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}\)
B = \(\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)
Tính \(\dfrac{B}{A}\)
Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)
\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)
\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)
\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)
\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)