Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Vĩnh Hà
Xem chi tiết
tung nguyen
Xem chi tiết
Dich Duong Thien Ty
21 tháng 7 2015 lúc 11:14

Ta có : 

Cho biểu thức tính trên là A 

A = 10n + 72n - 1 = 10n - 1 + 72n

10n - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

 A = 10n - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n

Ta thấy: 11...1 có n chữ số 1 có tổng các chữ số là n

=> 11..1 - n chia hết cho 9

=> A : 9 = 11..1 - n + 9n chia hết cho 9

               Vậy A chia hết cho 81

Phạm Nguyễn Gia Huy
20 tháng 1 2016 lúc 15:07

nó cũng dễ thật nhưng mà bạn bich duong thien ty cũng giỏi thật !

Hoàng Văn Quân
29 tháng 3 2016 lúc 20:23

ban kia lam dung roi do

Nguyễn Trần Minh Thư
Xem chi tiết
Vương Thị Diễm Quỳnh
21 tháng 11 2015 lúc 11:17

ta có :

cho biểu thức tính trên là A

A=10n+72n-1=10n-1+72n

10n-1=9999...99(có n-1 cs 9) =9.(111..11)( có n chữ số 1)

A=10n-1+72n=9.(111...1)+72n

=>A:9=111...11-n+9n

ta thấy : 11..11 coa n chữ số 1 có tổng các chữ số là n

=>11..1-n chia hết cho 9

=>A:9=11..1-n+9n chia hết cho 9

vậy A chia hết cho 81

nguyen trong hieu
Xem chi tiết
Zeref Dragneel
24 tháng 11 2015 lúc 21:30

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm

trần thị thu thủy
Xem chi tiết
Phạm Tuấn Kiệt
24 tháng 11 2015 lúc 15:10

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
Ta có:

10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9

=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81

=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81

=>đpcm.

Nguyễn Thị Hà Phương
Xem chi tiết
shitbo
20 tháng 11 2018 lúc 10:28

10n+72-1=10n-1-9n+81n

=999.....99(n chữ số)-9n+81n

=9(1111...1(n chữ số)+n)+81n

Ta dễ thấy rằng 111..1(n chữ số) và n có cùng số dư khi chia cho 9

nên 1111...1(n chữ số)-n chia hết cho 9

=> 9(111...1(n chữ số)-n) chia hết cho 81

Mà 81n cũng chia hết cho 81

=> 10n+72n-1 chia hết cho 81 với 

n E N

Trần Văn Hùng
20 tháng 11 2018 lúc 10:31

như shitbo đó,tk mk vs nha,please

Đào Thị Quỳnh Giang
20 tháng 11 2018 lúc 10:46

Ta có:

 \(10^n+72n-1\)

=\(10^n-1+72n\)

=\(\left(10-1\right)\left(10^{n-1}+10^{n-2}+...+10+1\right)+72n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1\right)-9n+81n\)

=\(9\left(10^{n-1}+10^{n-2}+...+10+1-n\right)+81n\)

=\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n\)

Vì:

 \(10^n-1=\left(10-1\right)\left(10^{n-1}+...+10+1\right)⋮9\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]⋮81\)

\(\Rightarrow\)\(9\left[\left(10^{n-1}+1\right)+\left(10^{n-2}+1\right)+...+\left(10-1\right)\left(1-1\right)\right]+81n⋮81\)

\(\Rightarrow10^n+72n-1⋮81\left(đpcm\right)\)

Nguyễn Ngọc Uyên Phương
Xem chi tiết
Huỳnh MinhKhang
Xem chi tiết
titanic
13 tháng 12 2016 lúc 12:03

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n
10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
=> A chia hết cho 81

Sư tử đáng yêu
28 tháng 12 2018 lúc 9:00

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n

10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9

=> A : 9 = 11..1 - n + 9n chia hết cho 9

=> A chia hết cho 81

tth_new
28 tháng 12 2018 lúc 9:47

Hoặc dùng phương pháp quy nạp dạng cơ bản (dùng được cho toán 6 nâng cao) 

Với \(n=0\Rightarrow\).... (bạn làm chỗ này tiếp nhé)

Với n = 1 \(\Rightarrow10^n+72n-1=10^1+72.1-1=81⋮81\)

\(\Rightarrow\)mệnh đề đúng với n = 1     (1)

Giả sử mệnh đề đúng với n = k tức là \(10^k+72k-1⋮81\) (giả thiết qui nạp)   (2)

Ta sẽ chứng minh nó cũng đúng với n = k + 1.Thật vậy:            

\(10^{k+1}+72\left(k+1\right)-1\)

\(=10\left(10^k+72k-1\right)-\left(648k-81\right)\)

Mà \(10^k+72k-1⋮81\) nên \(10\left(10^k+72k-1\right)⋮81\)   (*)

Mặt khác: \(648k⋮81;81⋮81\Rightarrow648k-81⋮81\) (**)

Từ (*) và (**) suy ra \(10\left(10^k+72k-1\right)-\left(648k-81\right)⋮81\) 

\(\Rightarrow\)mệnh đề đúng với n = k + 1 (3)

Từ (1) và (2) và (3) suy ra mệnh đề đúng với mọi \(n\inℕ\) (đpcm)

Doremon
Xem chi tiết