Chứng tỏ rằng các phân số tối giản:
\(\dfrac{4n+1}{6n+1}\)
chứng tỏ rằng các phân số 4n+1/6n+1laf phân số tối giản với mọi số tự nhiên n
Gọi d là ƯCLN(4n+1,6n+1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{1;2\right\}\)
Mà 4n+1 không chia hết cho 2
6n+1 không chia hết cho 2
\(\Rightarrow d=1\)
Vậy \(\frac{4n+1}{6n+1}\)là phân số tối giản
Gọi d là ước chung của 4n+1 và 6n+1. (d€ N*)
\(\Rightarrow4n+1⋮d\) \(\orbr{\begin{cases}\Rightarrow3.\left(4n+1\right)⋮d\\\Rightarrow2.\left(6n+1\right)⋮d\end{cases}}\)
\(\Rightarrow6n+1⋮d\)
\(\Rightarrow3.\left(4n+1\right)-2.\left(6n+1\right)⋮d\)
\(12n+3-12n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số\(\frac{4n+1}{6n+1}\) là phân số tối giản
Chứng tỏ rằng với n thuộc N* phân số A = \(\frac{4n-1}{6n-1}\)là phân số tối giản.
có nhiều số lắm cậu cứ lấy số chắn mà thay cho n
chứng tỏ phân số 4n+2/6n+1 là phân số tối giản
giải giúp mình với ạ
Ta xét ( 4n + 2 ; 6n + 1 ) = ( 6n + 1 - ( 4n + 2 ) ; 4n + 2 )
= ( 2n - 1; 4n + 2 ) = ( 4n + 2 - ( 2n - 1 ); 2n - 1 )
= ( 2n + 1 ; 2n - 1)
= ( 2n + 1; 2n + 1 - ( 2n - 1) )
= ( 2n + 1; 2 )
= 1
=> 4n + 2 và 6n + 1 là hai số nguyên tố cùng nhau
=> 4n+2/6n+1 là phân số tối giản.
chứng minh rằng 6n^2+6n+1/4n+1 là phân số tối giản
6n2 + 6n + 1/4n + 1
= 6n2 + 6n1 + 1/4n1 + 11
Xem xét ta thấy n1 là số tự nhiên mũ 1 nên không thể gộp lại để tính
= 61 + 62 + 11
= 64 + 42 + 11
= 101
Rút gọn lũy thừa thành : 10.10 = 2.5
bạn ơi nhưng đây là đang hỏi chứng minh mà :(
Chứng minh rằng với n thuộc N* các phân số sau là phân số tối giản
a. 3n-2/4n-3
b. 4n+1/6n+1
a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)
=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1
=> 3n-2/4n-3 là phân số tối giản
b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)
a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)
\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)
\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.
b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)
\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.
Chứng tỏ rằng với mọi số nguyên n, các phân số sau tối giản:
a) 15n+1/30n+1. ; b) 12n+1/30n+2. ; c)8n+5/6n+4 ; d)2n+3/4n+8
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
Chứng minh rằng phân số 4n+1/6n+1 là phân số tối giản
Gọi ƯCLN(4n + 1,6n + 1) = d
Ta có: 4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d => 12n + 3 chia hết cho d
6n + 1 chia hết cho d => 2(6n + 1) chia hết cho d => 12n + 2 chia hết cho d
=> 12n + 3 - (12n + 2) chia hết cho d
=> 12n + 3 - 12n - 2 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(4n + 1,6n + 1) = 1
=> \(\frac{4n+1}{6n+1}\)là phân số tối giản
gọi uwcln( 4n+1; 6n+1) là d
ta có 4n+1 chia hết cho d . 6n+1 chia hết cho d
=>3(4n+1) chia hết cho d. 2(6n+1)chia hết cho d
=>12n+3 chia hết cho d 12n+2 chia hết cho d
=>(12n+3)-(12n+2) chia hết cho d
=>1 chia hết cho d =>d=1
vậy 4n+1 và 6n+1 là phân số tối giản
Chứng tỏ rằng các Phân số sau là Phân số tối giản:
a) 4n+1/6n+1
b) n3+2n/n4+3n2+1 (n thuộc N*)
Bài 1: Tìm x ∈ N biết:
a) 96 chia hết cho x ; 102 chia hết cho x và x > 3
b) 172 chia x dư 1 ; 183 chia x dư 3
Bài 2:
a) Tìm ƯCLN(4n + 7 ; 2n + 3)
b) Chứng tỏ rằng: \(\dfrac{3n+5}{6n+9}\) là phân số tối giản với x ∈ N
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản